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Abstract

This paper investigates the long-run effects of public debt and inflation on economic growth.
Our contribution is both theoretical and empirical. On the theoretical side, we develop a
cross-sectionally augmented distributed lag (CS-DL) approach to the estimation of long-run
effects in dynamic heterogeneous panel data models with cross-sectionally dependent errors.
The relative merits of the CS-DL approach and other existing approaches in the literature are
discussed and illustrated with small sample evidence obtained by means of Monte Carlo
simulations. On the empirical side, using data on a sample of 40 countries over the 1965-
2010 period, we find significant negative long-run effects of public debt and inflation on
growth. Our results indicate that, if the debt to GDP ratio is raised and this increase turns out
to be permanent, then it will have negative effects on economic growth in the long run. But if
the increase is temporary, then there are no long-run growth effects so long as debt to GDP is
brought back to its normal level. We do not find a universally applicable threshold effect in
the relationship between public debt and growth. We only find statistically significant
threshold effects in the case of countries with rising debt to GDP ratios.

JEL Classifications: C23, E62, F34, H6.

Keywords: Long-run relationships, estimation and inference, large dynamic heterogeneous
panels, cross-section dependence, debt, inflation and growth, debt overhang.
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1. Introduction

The debt-growth nexus has received renewed interest among academics and policy makers
alike in the aftermath of the recent global financial crisis and the subsequent euro area
sovereign debt crisis which has triggered trillions of dollars in fiscal stimulus across the
globe. This paper investigates whether a build-up of public debt slows down the economy in
the long run. The conventional view is that public debt (arising from deficit financing) can
stimulate aggregate demand and output in the short run, but crowds out capital and reduces
output in the long run. In addition, there are possible non-linear effects where the build-up of
debt can harm economic growth especially when the level of debt exceeds a certain threshold,
as estimated, for example, by Reinhart2010 to be around 90% of the GDP. However, such
results are obtained under strong homogeneity assumptions across countries, and without
adequate attention to dynamics, feed-back effects from debt to GDP, and error cross-sectional
dependencies that exist across countries, due to unobserved common factors or spill-over
effects that tend to magnify at times of financial crises. Due to the intrinsic cross-country
heterogeneities, the thresholds are most-likely country specific and estimation of a universal
threshold based on pooling of observations across countries might not be informative to
policy makers interested in a particular economy and their use could be even misleading.
Relaxing the homogeneity assumption, whilst possible in a number of dimensions (as seen
below), is difficult when it comes to the estimation of country-specific thresholds, because
due to the non-linearity of the relationships involved, identification and estimation of
country-specific thresholds require much larger time series data than are currently available.

In this paper we model the growth rates, as opposed to levels of (log) GDP and debt to GDP,
which allows us to make inferences about the long-term effects of debt on growth, regardless
of thresholds. Using recent developments in the literature on dynamic heterogeneous panels,
we provide a fresh re-examination of debt-growth nexus while allowing for dynamic
heterogeneities and cross-sectional error dependencies. Our focus will be on the long-run
impacts of debt and inflation on GDP growth which will be shown to be robust to feedbacks
from growth to debt and inflation. We use a relatively large panel of advanced and emerging
market economies, and jointly model inflation, debt, and growth. We consider the role of
inflation in our long-run analysis because, in some countries in the panel that do not have
active government bond markets, deficit financing is often achieved through money creation
with high inflation. Like excessively high levels of debt, high levels of inflation, when
persistent, can also be detrimental for growth. By considering both inflation and debt we
allow the regression analysis to accommodate both types of economies in the panel.

The paper also makes a theoretical contribution to the econometric analysis of the long run. A
new approach to the estimation of the long-run coefficients in dynamic heterogeneous panels
with cross-sectionally dependent errors is proposed. The approach is based on a distributed
lag representation that does not feature lags of the dependent variable, and allows for a
residual factor error structure and weak cross-section dependence of idiosyncratic errors.
Similarly to Common Correlated Effects (CCE) estimators proposed by Pesaran2006b, we
appropriately augment the individual regressions by cross-section averages to deal with the
effects of common factors. We derive the asymptotic distribution of the proposed cross-
section augmented distributed lag (or CS-DL in short) mean group and pooled estimators
under the coefficient heterogeneity and large time (T ) and cross section ( N) dimensions.
We also investigate consequences of various departures from our maintained assumptions by
means of Monte Carlo experiments, including unit root in factors and/or in regressors,
homogeneity of coefficients or breaks in error processes. The small sample evidence suggests
that the CS-DL estimators often outperform the traditional approach based on estimating the
full autoregressive distributed lag (ARDL) specification. However, the CS-DL approach
should be seen as complementary and not as superior to the ARDL approach due to its two



drawbacks: unlike the panel ARDL approach it does not allow for feedback effects from the
dependent variable onto the regressors, and its small sample performance deteriorates when
the roots of the AR polynomial in the ARDL representation are close to the unit circle. The
relative merits of different approaches are carefully documented in the paper.

Our empirical contribution is in estimating long-run effects of debt and inflation on economic
growth in a panel of 40 countries over the period 1965--2010. Cross-country experience
shows that some economies have run into debt difficulties and experienced subdued growth
at relatively low debt levels, while others have been able to sustain high levels of
indebtedness for prolonged periods and grow strongly without experiencing debt distress.
This suggests that the effects of public debt on growth varies across countries, depending
critically on country-specific factors and institutions.” It is therefore important that we take
account of cross-country heterogeneity. The dynamics should also be modelled properly,
otherwise the estimates of the long-run effects might be inconsistent. Last but not least, it is
now widely agreed that conditioning on observed variables specific to countries alone need
not ensure error cross-section independence that underlies much of the panel data literature. It
is, therefore, also important that we allow for the possibility of cross-sectional error
correlations, which could arise due to omitted common effects, possibly correlated with the
regressors. Neglecting such dependencies can lead to biased estimates and spurious inference.

We adopt a cross-section augmented ARDL approach (CS-ARDL), advanced in
ChudikPesaran2013a, and a CS-DL approach developed in this paper. This estimation
strategy takes into account all three key features of the panel (i.e. dynamics, heterogeneity
and cross-sectional dependence) jointly, in contrast with the earlier literature surveyed in
Section 5. We study whether there is a common threshold for government debt ratios above
which long-term growth rates are adversely affected (especially if the country is on an
upward debt trajectory). We particularly look into debt trajectory beyond certain debt
threshold levels as to our knowledge no such systematic analysis has been carried out in the
past. We do not find a universally applicable threshold effect in the relationship between debt
and growth. We only find a statistically significant threshold effect in the case of countries
with rising debt to GDP ratios. The debt trajectory seems much more important than the level
of debt itself. Provided that debt is on a downward path, a country with a high level of debt
can grow just as fast as its peers. This "no-simple-debt-threshold-level” finding can be driven,
among other possible factors, by cross-country differences in (i) overall net wealth
(international investment position) and the depth of financial system; (ii) investor behavior
(home bias); (iii) ability to generate primary surpluses and interest costs--growth
considerations; and (iv) confidence factors. Our results also show that, regardless of the
threshold, there are significant and robust negative long-run effects of debt on economic
growth. By comparison, the evidence of a negative effect of inflation on growth is less strong,
although it is statistically significant in the case of most specifications considered.

Our results suggest that if the debt level is raised and this increase is permanent, then it will
have negative effects on growth in the long run. On the other hand, if the debt rises (for
instance to help smooth out business cycle fluctuations) and this increase is temporary, then
there are no long-run negative effects on output growth. The key in debt financing is the
reassurance, backed by commitment and action, that the increase in government debt is
temporary and will not be a permanent departure from the prevailing norms.

The remainder of the paper is organized as follows. We begin with the definition of long-run
coefficients and discuss their estimation in Section 2. The next section introduces the CS-DL

"These might include prospects for primary fiscal surpluses and growth; cost of borrowing including both the interest cost of debt already
contracted and market perceptions of a country's ability to service future borrowings; regulatory requirements; nature of the investor base
and the track record of meeting its debt obligations (whether it had debt distress/lost market access); and vulnerability to shocks (confidence
effects).



approach to the estimation of long-run relationships. Section 4 investigates the small sample
performance of the CS-DL approach and compares it with the performance of the CS-ARDL
approach by means of Monte Carlo experiments. Section 5 reviews the literature on long-run
effects of inflation and debt on economic growth. Section 6 presents empirical findings on the
long-run effects of debt and inflation on economic growth in our panel of countries. The last
section concludes. Mathematical derivations and other supporting material are relegated to
the Appendix.

A brief word on notation: All vectors are column vectors represented by bold lower case
letters and matrices are represented by bold capital letters. |A] =/ o(AA) is the spectral
norm of A, p(A) is the spectral radius of A’Z a, =0(b,) denotes the deterministic
sequence {a,} is at most of order b,. Convergence in probability and convergence in

p d i
distribution are denoted by — and —, respectively. (N,T)—oo denotes joint asymptotic in
N and T, with N and T — oo, in no particular order. We use K to denote a positive fixed
constant that does not vary with N or T .

2. Estimation of Long-Run or Level Relationships in Economics

Estimating long-run or level relationships is of great importance in economics. The concept
of the long-run in economics is associated with the steady-state solution of a structural model.
Often the same long-run relations can also be obtained from arbitrage conditions within and
across markets. As a result many long-run relationships in economics are free of particular
model assumptions; examples being purchasing power parity, uncovered interest parity and
the Fisher inflation parity. Other long-run relations, such as those between macroeconomic
aggregates like consumption and income, output and investment, technological progress and
real wages, are less grounded in arbitrage and hence are more controversial, but still form a
major part of what is generally agreed in empirical macro modelling. This is in contrast to the
analysis of short-run effects which are model specific and subject to identification problems.

The estimation of long-run relations can be carried out with or without constraining the short-
run dynamics (possibly from a particular theory). In this section we focus on the estimation of
long-run relations without restricting the short-run dynamics. In view of the empirical
application that we have in mind, we shall assume that there exists a single long-run
relationship between the dependent variable, y,, and a set of regressors.3 For illustrative
purposes, suppose that there is one regressor x, and suppose that z, =(yt,xt)' is jointly

determined by the following vector autoregressive model of order 1, VAR(1),
2, =®z,_ +e, 1)

where ® = (¢;) isa 2x2 matrix of unknown parameters, and e, = (eyt,ext) is 2 -dimensional
vector of reduced form errors. Denoting the covariance of e, and e, by wVar(e, ), we can

write

e, = E(ew|ext)+ u, = we, +U, (2)

*Note that if X is a vector, then ”X" =4 p‘X X ) = A/ X X corresponds to the Euclidean length of vector X .

*The problem of estimation and inference in the case of multiple long-run relations is further complicated by the identification problem and
simultaneous determination of variables. The case of multiple long-run relations is discussed for example in Pesaran1997.



where by construction u, is uncorrelated with e, , namely E(ut|ext)= 0. Substituting (2) for
e,., the equation for the dependent variable y, in (1) is

Ve = @Y+ 0% + @, + U, (3)

Using the equation for the regressor x, in (1), we obtain the following expression for e,

€ = X — D1 Y1 — P X1

and substituting this expression for e,, back in (3) yields the following conditional model for
Yeo

Yo = @Y+ BoX + BiXes Uy, (4)
where
O =¢y— by, fy = 0, = ¢, — 0Py, (5)

Note that u, is uncorrelated with the regressor x, and its lag by construction. (4) is
ARDL(1,1) representation of y, conditional on x,, and the short-run coefficients ¢, f,, and

p, can be directly estimated from (4) by least squares. Model (4) can also be written as the
following error-correction model,

AY, = (L= @)Yy = 1)+ B +Uy,

or as the following level relationship

y, = 6, +a(L)Ax, +0,,

where the level coefficient is defined by the ratio

0:ﬁ0+ﬁl
1-¢

0, = (1-¢L) "u, is uncorrelated with regressor x, and its lags, and a(L)=)"" a,L’, with

o=y 5, for £=012.., and §(L)=>"" 5L =(1-¢L)"(B,+BL). Note that if z, is

s=/+1

1(1) then (1,-0) is the cointegrating vector and the level relation is also cointegrating.

The level coefficient 6 can still be motivated as the long-run outcome of a counterfactual
exercise even if z, is stationary . One possible counterfactual is to consider the effects of a

permanent shock to the x, process on vy, inthe long run. Let

|1, €, 0 = 0, fOrN =0,1,2,...)

gyt = ISEUO E(yt+s - /ly,t+s
and similarly

l 16,00 =0, fOrh=01,2,..)

gxt =lim E(X1+s ~ Hytis

S—0
where u, and g, respectively, are the deterministic components of y, and x_(in the
current illustrative example deterministic components are zero) and |, is the information set



containing all information up to the period t. Using (1) and noting that E(ew|ext)= e, , We
obtain g, =9,, g, =g,

_ o+ ¢, — 0y,
(9 )_ 1| @ _| Gt by — G + -1
g—[gij—(b—‘b) [JJO-X_ a)¢21_¢11+1 e

B ¢11 + ¢22 - ¢11¢22 + ¢12¢21 -1

and

9y _ 0+, -0,

9, 1-(d— ) ,

which upon using (5), yields, g, = g, , namely the long-run impact of a permanent change in
the mean of x on y is given by 6. Note that only in the special case when the reduced form
errors are uncorrelated (@ =0) then the short-run coefficient g, in the ARDL model (4) is
equal to 0 and the long-run coefficient @ reduces to ¢,,/(1— ¢, ). But in general, when o =0
, the short-run coefficient S, is non-zero and contemporaneous values of the regressor should

not be excluded from (4). In the stationary case with regressors not strictly exogenous, 6
depends also on the parameters of the x, process and the estimation of & should therefore be

based on (4).

An alternative way to show that 6 is equal to the ratio g /g, is to consider the ARDL
representation (4) for the future period t+s, given the information at time t—1. We first
note that

Yers = Heosa + BoXeos + BXeos s Ui

and after taking the conditional expectation with respect to {'1_1,ex,1+h =o,,forh = 0,1,2,...},
taking limits as s — oo, and noting that in the stationary case g, =g, and g, =g,, we
obtain

9y = @9, + o9, + B9,
and hence

9 _buth

9 1-9

as desired.

Regardless of whether the variables are 1(0) or I(1), or whether the regressors are exogenous
or not, the level coefficient 6 is well defined and can be consistently estimated. The rates of
convergence and the asymptotic distributions of the ARDL estimates of 6 are established in
Pesaran1999. See in particular their Theorem 3.3.

2.1 Two approaches to the estimation of long-run effects

Let y, be the dependent variable in country i, x, be the kx1 vector of country-specific
regressors, and suppose that the object of interest is the long-run coefficient vector of country

) 0 _ 1
“Note that in the stationary case Z/_O(I) = (| - (I)) .



i, denoted as ©,, or, in a multicounty context, the average long-run coefficients vector,

6=N"2"0,. In modelling the relationship between the dependent variable and the

regressors in a panel context, we need to allow for slope heterogeneity, dynamics and cross-
sectional dependence. This is accomplished by assuming that the dependent variable is given

by the following ARDL(p,, p,;) specification,

Pyi Pxi

Yie = Zq)i/! Yite T ZBIi//Xi,t—// + Uit (6)
= =0
Uy = v, + & (7)

fori=1,2,.,N and t=1,2,....,T , where f, isan mx1 vector of unobserved common factors,
and p,; and p, are the lag orders chosen to be sufficiently long so that u; is a serially
uncorrelated process across all i . The vector of long-run coefficients is then given by
Pyi
i’

0= ®

I py|

1- Z(Di/,
=1

There are two approaches to estimating the long-run coefficients. One approach, considered
in the literature, is to estimate the individual short-run coefficients {p,} and {B,} in the

ARDL relation, (6), and then compute the estimates of long-run effects using formula (8)
with the short-run coefficients replaced by their estimates {p, } and {ﬁi/ } We shall refer to

this approach as the "ARDL approach to the estimation of long-run effects”. The advantage
of this approach is that the estimates of short-run coefficients are also obtained. But when the
focus is on the long-run then, under certain conditions to be clarified below, an alternative
approach proposed in this paper can be undertaken to estimate 0, directly. This is possible by

observing that the ARDL model, (6), can be written as
Yie = 0%+, (L)Axit + Uy, )

where U = §0(L)_1Uit ; (l’i(l-): 1‘22%/“1 0, = ai(l)’ 9, (L) = ("i_l(l-)ﬁi(l-): ZZOSM,U ;
B.(L)=>"p,L" and o;(L)=3" > &.L'. We shall refer to the estimation of 6, based
on the distributed lag representation (9) as the "distributed lag (DL) approach to the
estimation of long-run effects”. Under the usual assumptions on the roots of (oi(L) falling
strictly outside the unit circle, then the coefficients of ai(L) are exponentially decaying; and
it is possible to show that, in the absence of feedback effects from lagged values of y, onto
the regressors x;,, a consistent estimate of @, can be obtained directly based on the least
squares regression of y, on x;, and {Ax,_, |\, where the truncation lag order p is chosen

appropriately as an increasing function of the sample size. But, when the feedback effects
from the lagged values of the dependent variable to the regressors are present, u, will be

correlated with x; and the DL approach would no longer be consistent. Note that strict

exogeneity is, however, not necessarily required for the consistency of the DL approach,
since arbitrary correlations amongst the individual reduced form innovations in e, are still



A

allowed. After the individual estimates @, are obtained, either using ARDL or DL approach,
they can then be averaged across i to obtain a consistent estimate of the average long-run

effects, given by 6= N="9, .

2.2 Pros and cons of the two approaches to the estimation of long-run effects

Consider first the ARDL approach, where the estimates of long-run effects are computed
based on the estimates of the short-run coefficients in (6). In the case where the unobserved
common factors are serially uncorrelated and are also uncorrelated with the regressors, the
long-run coefficients can be estimated consistently from the Ordinary Least Squares (OLS)
estimates of the short-run coefficients, irrespective of whether the regressors are strictly

exogenous or jointly determined with vy, , in the sense that z, = (yn,x}t) follows a VAR

model. The long-run estimates are also consistent irrespective of whether the underlying
variables are integrated of order one, 1(1) for short, or integrated of order zero, 1(0). These
robustness properties are clearly important in empirical research. However, the ARDL
approach has also a number of drawbacks. The sampling uncertainty could be large especially
when the speed of convergence towards the long-run relation is rather slow and the time
dimension is not sufficiently long. This is readily apparent from (8) since even a small change

to 1—22@ could have large impact on the estimates of 6, when ZZ(BM is close to unity.

In this respect, a correct specification of lag orders could be quite important for the
performance of the ARDL estimates of ©,. Underestimating the lag orders leads to

inconsistent estimates, whilst overestimating the lag orders could result in loss of efficiency
and low power when the ARDL long-run estimates are used for inference.

In the more general case when the unobserved common factors are correlated with the
regressors then LS estimation of ARDL model is no longer consistent and the effects of
unobserved common factors need to be taken into account. There are so far two possible
estimators developed in the literature for this case:” a principal-components based approach
by Song2013 who extends the interactive effects estimator originally proposed Bai2008 to
dynamic heterogeneous panels, and the dynamic common correlated effects mean group
estimator suggested by ChudikPesaran2013a. A recent overview of these methods is provided
in ChudikPesaran2013s. These estimators have (so far) been proposed only for stationary
panels, and are subject to the small T bias of the ARDL approach discussed above. Bias
correction techniques can also be used, but overall they do not seem to be effective when the
speed of adjustment to the steady state is slow.®

The main merits of the DL approach that we develop below is that, once (9) is appropriately
augmented by cross-section averages, it is robust along a number of dimensions that are
important in practice and it tends to show better small sample performance when the time
dimension T is not very large. This includes robustness to the possibility of unit roots in
regressors and/or factors, heterogeneity or homogeneity of short and/or long-run coefficients,
arbitrary serial correlation in ¢, and f, (note that @, is identified even when ¢, is serially

correlated), number of unobserved common factors (subject to certain conditions), and weak
cross-sectional dependence in the idiosyncratic errors, &,. These are very important
considerations in applied work. In addition, the CS-DL approach does not require specifying
the individual lag orders, p, and p,, and is robust to possible breaks in ¢,. The main

*Related is also the quasi maximum likelihood estimator for dynamic panels by MoonWeidner2010a, but this estimators has been developed
only for homogeneous panels.

*ChudikPesaran2013a consider the application of two bias correction procedures to dynamic CCE type estimators, but find that they do not
fully eliminate the bias.



drawback of the CS-DL approach, however, is that T, = o(L)‘u, is correlated with x, when
there are feedback effects from lagged values of y, onto the regressors, X, . This correlation

in turn introduces a bias that will not vanish as the sample size increase and therefore the CS-
DL estimation of the long-run effects is consistent only in the case when the feedback effects
(or reverse causality) are not present. The second drawback is that the small sample
performance is very good only when the eigenvalues of (o(L) are not close to the unit circle.

We will provide small sample evidence on the two approaches by means of Monte Carlo
experiments in Section 4.

3. Cross Section Augmented Distributed Lag (CS-DL) Approach to Estimation of Mean
Long-Run Coefficients

3.1 The ARDL panel data model
Suppose 'y, is generated according to the panel ARDL data model (6) with p,; =1 and

pxi = 0’
Yie = @iYia +BXi + 1if + & (10)
for i=1,2,..,N and t=1,2,...T. To allow for correlation between the m unobserved

factors, f,, and the k observed regressors, x;, , suppose that the latter is generated according
to the following canonical factor model

X, =Tf +v,, (11)

for i=1,2,..,N and t=1,2,...,T , where I'; is mxk matrix of factor loadings, and v, are
the idiosyncratic components of x,, which are assumed to be distributed independently of the
idiosyncratic errors, ¢,. The panel data model (10) and (11) is identical to the model

considered by Pesaran2006b with the exception that the lagged dependent variable is
included in (10). We have also omitted observed common effects and deterministics (such as
intercepts and time trends) from (10) to simplify the exposition. Introducing these terms and
additional lags of the dependent variable and regressors is relatively straightforward.

We are interested in the estimation of the mean long-run coefficients @ =E(8,), where 9,,
i=1,2,.,N are the cross section specific long-run coefficients defined by (8), which for
p, =1 and p, =0 reduces to

0, = L (12)
1-¢,
We postulate the following assumptions.

Assumption 1 (Individual Specific Errors) Individual specific errors ¢, and v, are

independently distributed for all i, j,t and t. &, follows a linear stationary process with
absolute summable autocovariances (uniformly in i),

&= D i (13)
=0

for i =1,2,...,N, where the vector of innovations &, = (,,,Cy-- &) 1S Spatially correlated
according to



& =Rg,,

in which the elements of ¢, are independently and identically distributed (I11D) with mean
zero, unit variance and finite fourth-order cumulants and the matrix R has bounded row and
column matrix norms, namely ||R||, < K and ||R||1 < K. In particular,

Var(e, )= iafipé =0 <K<, (14)

=0

for i=1,2,...,N, where o-é, =Var(§n). v,, follows a linear stationary process with absolute
summable autocovariances uniformly in i,

Vi = zsi/,vi,t—/,’ (15)
=0

for i=1,2,..,N, where v, is kx1 vector of IID random variables, with mean zero, variance
matrix I, and finite fourth-order cumulants. In particular,

ar(v, )= (35,5,

for i=1,2,...,N , where ||A| is the spectral norm of the matrix A.

=|E <K <o, (16)

Assumption 2 (Common Effects) The mx1 vector of unobserved common factors,
f =(f,, fy.... f.,), is covariance stationary with absolute summable autocovariances,

distributed independently of S and v for all i,t and t. Fourth moments of f,, for
¢=1,2,...,m, are bounded.
Assumption 3 (Factor Loadings) Factor loadings vy;, and I', are independently and

identically distributed across i, and of the common factors f,, for all i and t, with fixed
mean y and I, respectively, and bounded second moments. In particular,

v =v+n,m,:1D(0,@ Jfori=1.2....N,

and
vec(T; )= vec(T)+ny,my - IID(kOI, Qr)fori =1,2,...,N,

where Q and Q. are mxm and kmxkm symmetric nonnegative definite matrices,
<K, o<k, |[r<K,and |e]<K.

Assumption 4 (Coefficients) The level coefficients 0,, defined in (12), follow the random
coefficient model

0.=0+v,0,: IID(kOI,Qg)fori =1,2,..N, (17)

where [0|<K, [|Q,]<K, €, is kxk symmetric nonnegative definite matrix, and the

random deviations v; are independently distributed of y;, T';, ¢, v;, and f, forall i, j,

it
and t. The coefficients ¢, are distributed with a support strictly inside the unit circle.
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The polynomial 1—¢,L is invertible under Assumption 4, and multiplying (10) by (1—g0iL)_l
we obtain

Vi = (- L) B +L-gL) v +(1-pL) s,

= 0,x, — o, (L)AX, +y,f, + &, fori =1,2,...,N, (18)

where Ax; =X, =X, o,(L)= D o/ (1-0)'BL, f,=(-gL)"f, and &, = 1-pL) s,
. The distributed lag specification in (18) does not include lagged values of the dependent
variable, and as a result the CCE estimation procedure can be applied to (18) directly. The
level regression of y, on x, is estimated by augmenting the individual regressions by
differences of unit specific regressors x, and their lags, in addition to the augmentation by
the cross section averages that take care of the effects of unobserved common factors.

Let w= (Wl,WZ,...,WN) bean N x1 vector of weights that satisfies the following “granularity'
conditions

jui=o[ "} 1)
W [N _;juniformlyini, (20)
[w]

and the normalization condition
dw =1 (21)

Define the cross section averages 7, = (ym,i'm) = ZiN:lwizn, and consider augmenting the
regressions of y, on x, and the current and lagged values of Ax;,, with the following set of

cross section averages, SNptzsz{A7w,t_f}f:o- Cross section averages approximate the
unobserved common factors arbitrarily well if

p
9 = F,— E(f Sy ) >0, (22)

uniformly in t, as N and p—J>oo. Sufficient conditions for result (22) to hold are given by
Assumptions 1-4 and if the rank condition rank(I')=m holds. Different sets of cross section
averages could also be considered. For example, if the set of cross section averages is defined
as SNp?t :{Zm_ﬁ}fjo, then the sufficient condition for (22) to hold under Assumption 1-4

would be the usual rank condition rank(C)=m, where C=(y,I'). Using covariates to
enlarge the set of cross section averages could also be considered, as in ChudikPesaran2013a.
Theses rank conditions can be relaxed in the case y; and T, are independently distributed.’

In this case the asymptotic variance of the CCE estimators does depend on the rank condition,
nevertheless the CS-DL estimators are consistent and the proposed non-parametric estimators

"Correlation of Yi and Fi could introduce a bias in the rank deficient case, as noted by SarafidisWansbheek2012.
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of the covariance matrix of the CS-DL estimators given below are also valid regardless of
whether the rank condition holds.

Let us also introduce the following notations, which will prove useful for setting up of th

proposed estimators. Let Y, = (yi'pﬂ, Yipearos yivT) , X, = (xi'pﬂ,xi'pﬂ,...,xi;) ,
zw = (zw,p+l’zw,p+2""’zw,T) )
AX; o AX; o AX,
Axip — AXIi:, p+2 Axli:,p+l A):(Iis ,
(T—p)xpk : : :
AXIi T AXIi T4 AXIi T-ptL

AX,, = ZN WAX;,, Q, = (ZW,AY Axip), and the define the projection matrix

i=1 1 wp !

My =1, - Qu(QuQu ) Qs (23)

for i=1,2,..,N, where p= p(T) is a chosen non-decreasing truncation lag function such

that 0<p<T,and A" is the Moore-Penrose pseudoinverse of the matrix A. We use the
Moore-Penrose pseudoinverse as opposed to standard inverse in (23) because the column
vectors of Q,, could be asymptotically (as N — oo ) linearly dependent.

The CS-DL mean group estimator of the mean long-run coefficients is given by

U N ]

Ove = iz@i, (24)
N =

where

U . AN\l

0 = (XiMini) 1XiMqiyi' (25)

The CS-DL pooled estimator of the mean long-run coefficients is

0oy LN
0p :{ZWiXiMinij D WXMY;. (26)

i=1 i=1

[ [
Estimators Omc and 0 differ from the mean group and pooled CCE estimator developed in
Pesaran2006b, which only allows for the inclusion of a fixed number of regressors, whilst the
CS-DL type estimators include p, lags of Ax, and their cross section averages, where p;

increases with T , albeit at a slower rate.

In addition to Assumptions 1-4 above, we shall also require the following assumption to hold.

. N 0 ) e
Assumption 5 below ensures that Omc and 0 and their asymptotic distributions are well
defined.

Assumption 5
1. The matrix |imN,T,piOOZiN:lWiZ‘.i =W exists and is nonsingular, and supi'pHZ‘.T1 < K, where

X = plimT*X;M,;X;, and M,; is defined in (8.3).
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d 0 0 0 0
2. Denote the t-th row of matrix Xi; =M,X; by Xi :(Xilt,XiZt,....,XiktJ. The individual

[ . ) .
elements of xit have uniformly bounded fourth moments, namely there exists a positive
4

U
constant K < oo such that E{x.st}< K, forany t=1,2,..., T, i=12,..,N and s=1,2,...k.

. 1
3. There exists T, such that forall T >T,, (ZiNzlwiXiMini/T) exists.
4. There exists N,,T, and p, = p(T,) such that forall N >N,, T>T, and p(T)=> p(T,),
the k xk matrices (X'iMini/T)_l exist for all i, uniformly.

Our main findings are summarized in the following theorems.

Theorem 1 (Asymptotic distribution of $ MG$) Suppose vy,, for i=1,2,..,N and
t=1,2,..,T is given by the panel data model (10)-(11), Assumptions 1-5 hold, and

]
(N,T,p(T))—>o such that ~/N p(T)p” — 0, for any constant 0< p <1 and p(T)*/T -1,
0<U<oo. Then, if rank(")=m we have

JN [%Me—e}lN(o,gg), 27

[
where Q,=Var(8,) and Ouc is given by (24). If rank(I')=m and v, is independently
distributed of I';, we have

[ d
VN {em— e}—> N(0,Zc ). (28)
where
— . 1 : -1 ! -1
Ly =, + p|’|\lm szi Qi Qi X" |, (29)
,N—>w i=1

in which @ =Var(y,), Z = plimr...T XMy X; and Q; = plimr_..T "X;M,F. In both

[J
cases, the asymptotic variance of @me can be consistently estimated nonparametrically by
U 1 X0 0 0 0
e = mz[ei — O }[ei - eme} : (30)
4=t

Theorem 2 (Asymptotic distribution of $_P$) Suppose vy,, for i=12,...,N and
t=1,2,..,T are generated by the panel data model (10)-(11), Assumptions 1-5 hold, and

i
(N,T, p(T))—> o, such that /N p(T)p” — 0, for any constant 0< p <1 and p(T)*/T > U,
O<u<oo. Then, if vy, is independently distributed of I';, we have

13



i=1

N -1/2 D d
( wfj {Gp—ﬁ}—)N(O,EP), (31)

[J
where 0p is given by (26),

N
EP = \P*_IR*\I’*—l,\I’* = Ilm ZWiEi’ (32)
N—o0 527
2 2
* * * * - 1 N D * . 1 N D '
R'=R,+R),R; = L.mo—z_l“wi TQ,E, R = Lmﬁz_l“wi QyR,Q;,

Q,=Var(e,), @ =Var(y;), Z;=plimT*XM;X;, Q;=plimT'XM;F, and

[ /

Wi = \/WWi (ZLW?)IZ. If rank(F): m, then vy, is no longer required to be independently
distributed of ', and (31) continues to hold with £, = ¥*'R,¥"". In both cases, X, can be
consistently estimated by )ip defined by equation (8.25) in the Appendix.

Theorems 1-2 establish asymptotic distribution of gme and EP under slope heterogeneity.
These theorems distinguish between cases where the rank condition that ensures (22) is
satisfied or not. In the former case, unobserved common factors can be approximated by
cross section averages when N is large and regardless of whether v, is correlated with T,

N 0 . .
Omc and 0 are consistent and asymptotically normal. In the latter case, where the
unobserved common factors cannot be approximated by cross section averages when N is

N N
large, then so long as y; and I'; are independently distributed, both Ome and 6 continue to

be consistent and asymptotically normal, but the asymptotic variance depends also on
unobserved common factors and their loadings. In both (full rank or rank deficient) cases, the
asymptotic variance of the CS-DL estimators can be estimated consistently using the same
non-parametric formulae as in the full rank case.

There are several departures from the assumptions of these theorems that might be of interest
in applied work, such as the consequences of breaks in the error processes, &, , possibility of

unit roots in factors and/or regressor specific components, and situations where some or all
coefficients are homogeneous over the cross-section units. These theoretical extensions are
outside the scope of the present paper but we investigate the robustness of the proposed CS-
DL estimator to such departures by means of Monte Carlo simulations in the next section.

4. Monte Carlo Experiments

This section investigates small sample properties of the CS-DL estimators and compare them
with the estimates obtained from the panel ARDL approach using the dynamic CCEMG
estimator of the short-run coefficients advanced in ChudikPesaran2013a, which we denote by
CS-ARDL. First, we present results from the baseline experiments with heterogeneous slopes
(long- and short-run coefficients), and then we document small sample performance of the
alternative estimators under various deviations from the baseline experiments, including
robustness of the estimators to the introduction of unit roots in the regressors or factors,
possible breaks in the idiosyncratic error processes, and the consequences of feedback effects
from lagged values of vy, onto x;,. Second, we investigate whether it is possible to improve
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on the estimation of short-run coefficients, provided the model is correctly specified, by
imposing CS-DL estimates of the long-run coefficients.

We start with a brief summary of the estimation methods and a description of the data
generating processes. Then we present findings on the estimation of mean long-run
coefficient and on the extent to which estimates of the short-run coefficients can be improved
by using the CS-DL estimators of the long-run effects.

4.1 Estimation methods
The CS-DL estimators are based on the following auxiliary regressions:

p-1 Py Px

Yii = Cyi + 0.x; + 0i A%, + za)y,i/ Vit zmlx,i/xt—/ + €its (33)

/=0 /=0 /=0
where X, = N‘lzihilxn, Y, = N‘lZiN:lyn, p, is set equal to the integer part of T"*, denoted as
[T1’3], p=p, and p; is set to 0. We consider both CS-DL mean group and pooled
estimators based on (33).
The CS-ARDL estimator is based on the following regressions:

p p P,
y X, z

Yie = Cyi + Zq’i/th-/ + § BiXi, + Z"’i/zt—/ +€i» (34)
=1 =0 =0

where z, = (Vt,i't) . P, = [T1’3] and two options for the remaining lag orders are considered:
ARDL(2,1) specification, p,=2 and p, =1, and ARDL(1,0) specification, p, =1 and
p, =0. The CS-ARDL estimates of individual mean level coefficient are then given by

Px

Ai/,
= £ (35)

Py !
1-2> %,
=1

where the estimates of short run coefficients (¢, ,[Aii/,) are based on (34). The mean long-run

A

eCS—ARDL,i

effects are estimated as N_lzi’ilécS—ARDL,i and the inference is based on the usual non-
parametric estimator of asymptotic variance of the mean group estimator.

4.2 Data generating process

The dependent variable and regressors are generated from the following ARDL(2,1) panel
data model with factor error structure,

Yie = Cyi + @i Yiva + PiaYir 2 + BioXie + BiaXipa + Uiy Uy = vf + & (36)
and
X = Cyi tKyiYia t vyif + Vi (37)

We generate vy,,x; for i=12,..,N, and t=-99,..0,12,..., T with the starting values
Yi 101 = Yi 100 = 0, and the first 100 time observations (t=-99,—48,...,0) are discarded to
reduce the effects of the initial values on the outcomes. The fixed effects are generated as
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¢, :IDN(L,1), and c, =c, +g.;, where ¢ ;:1IDN(0,1), thus allowing for dependence

between x;, and c,; .

We consider three cases depending on the heterogeneity/homogeneity of the slopes:
o (heterogeneous slopes - baseline) ¢, = (L+U,; i, @, =-Un,, U, 11DU(0.2,0.3),
n, - 11IDU (0,0, ). The long-run coefficients are generated as 6, : IIDN (1,0.22) and
the regression coefficient are generated as S, =Ugn, , ﬁilz(l—uﬂi)nﬂi, where
ns =60/, —@,) and U, : 11DU(0,1).
e (homogeneous long-run, heterogenous short-run slopes) 6, =1 for all i and the

remaining coefficients (¢,,¢,,, B, 8,) are generated as in the previous fully
heterogeneous case.

¢ (homogeneous long- and short-run slopes) ¢,, =1.15¢,.../2, ¢, =-0.15¢,.. /2, 6, =1,
and ﬂio = ﬂil = 05/(1_(0max/2)
We also consider the case of ARDL(1,0) panel model by setting u,; =0 and u, =1 forall i,

which gives ¢,, = B, =0 for all i. We consider three values for ¢, =0.6, 0.8 or 0.9.

The unobserved common factors in f, and the unit-specific components, v,, are generated as
independent AR(1) processes:

fu=pufia, +Sw S 1IDN (O'O-;/)’ (38)
Vie = PuiVia T Vies Gt - 1IDN (O:O'vzi )’ (39)

for i=12,..,N, ¢=12,..,m, and for t=-99,.0,12,.., T with the starting values
f, 10=0,and v, o, =0. The first 100 time observations (t =-99,-48,...,0) are discarded.
We consider three possibilities for the AR(1) coefficients p,, and p,;:

e (stationary baseline) p,:1IDU[0.0.95], o2=1-pZ for all i; p,=0.6, and
o4 =1-pf for £=12,...m.

e (nonstationary factors) p,:1IDU[0.0.95], o2 =1-p2 for all i; and p, =1,
o, =01% for 1=12,..m.

e (nonstationary regressors and stationary factors) p, =1, o3 =0.1* for all i; and

py =06, 03 =1-pf, for /=12,..m.

We consider also two options for the feedback coefficients x;: no feedback effects, x; =0
for all i, and with feedback effects, Ky IIDU(0,0.Z).

Factor loadings are generated as
v, : IDN(y,,0.22 landy, : IDN (y,,,0.2%),

for /=1,2,.,m, and i=1,2,..,N. Also, without loss of generality, the means of factor
loadings are calibrated so that Var(y'ift)=Var(y'Xift)=1 in the stationary case. We set
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y,=\b,, and =\, for ¢=12..m, where b =1/m-02°,  and
b, = 2/[m(m+1)]-2/(m+1)0.22. This ensures that the contribution of the unobserved factors

to the variance of y, does not rise with m in the stationary case. We consider m=2 or 3
unobserved common factors.

Finally, the idiosyncratic errors, ¢,, are generated to be heteroskedastic, weakly cross-
sectionally dependent and serially correlated. Specifically,

E = Pabira t Cins (40)

where ¢, = (&y, o Cy) are generated using the following spatial autoregressive model
(SAR),

& =aS.& +qy (41)
in which the elements of ¢, are drawn as IIDN{O,%af(l—pj)] with o/ obtained as

independent draws from »?(2) distribution,

0100 - 0
1ol 0
2 2
o%o
Ssz 1
00 1
2
151
2 2
00 010

and the spatial autoregressive parameter is set to a_ =0.6. Note that {8n} is cross-sectionally
weakly dependent for |a,|<1. We consider p, =0 for all i or p,:11DU(0,0.8). We also
consider the possibility of breaks in ¢, by generating for each i random break points
b e{,2,.T}and

& = Pi&i i+ fort=1,2,...0

&= P + S fort=b +1,b +2,...,T,

where p2,p:11DU(0,0.8), and & = (£, &y Cy) IS generated using SAR model (41)
with ¢, : IIDN{O,%GiZ(l—pSZ)]

The above DGP is more general than the other DGPs used in MC experiments in the
literature and allows the factors and regressors to be correlated and persistent. The above
DGPs also include models with unit roots, breaks in the error processes, and allows for
correlated fixed effects. To summarize, we consider the following cases:

1. (3 options for heterogeneity of coefficients) heterogeneous baseline, homogeneous
long-run with heterogeneous short-run, and both long-and short-run homogeneous,
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2. (2 options for lags) ARDL(2,1) baseline, and ARDL(1,0) model where u, =0 and
ug, =1 forall i, which gives ¢, = 8, =0 forall i.

3. (3 options for ¢,..,) ¢, =0.6 (baseline), 0.8, or 0.9

4. (3 options for the persistence of factors and regressors) stationary baseline, 1(1)
factors, or I(1) regressor specific components v,,,

5. (2 options for the number of factors) full rank case baseline m =2, or rank deficient
case m=3,

6. (3 options for the persistence of idiosyncratic errors) serially uncorrelated baseline
p. =0, p,:11DU(0,0.8), or breaks in the error process.

7. (2 options for feedback effects) «; =0 for all i (baseline), or x; : 11DU(0,0.2).

Due to the large number of possible cases (648 in total), we only consider baseline
experiments and various departures from the baseline. We consider the following
combinations of sample sizes: N,T e {30,50,100,150,200}, and set the number of replications
to R =2,000, in the case of all experiments.

4.3 Monte Carlo findings on the estimation of mean long-run coefficients

The results for the baseline DGP are summarized in Table 0. This table shows good
performance of the CS-DL estimators in the baseline experiments. This table also shows
problems with the CS-ARDL approach when T is not large (<100) due to the small sample

problems arising when Z;:yl(ai/ is close to unity. Also, CS-ARDL estimates based on
misspecified lags orders are inconsistent, as to be expected.

Next, we investigate robustness of the results to different assumptions regarding slope
heterogeneity. Table 1 presents findings for the experiment that depart from the baseline DGP
by assuming homogeneous long-run slopes, while allowing the short-run slopes to be
heterogeneous. Table 2 gives the results when both long- and short-run slopes are
homogeneous. These results show that the CS-DL estimators continue to have good size and
power properties in all cases.

Experiments based on the ARDL(1,0) specification (as the DGP) are summarized in Table 3.
CS-DL estimators continue to perform well, showing their robustness to the underlying
ARDL specification.

The effects of increasing the value of ¢, on the properties of the various estimators are
summarized in Tables 4 (for ¢, =0.8) and 5 (for ¢, =0.9). Small sample performance of
the CS-DL estimators deteriorates as ¢,,,, moves closer to unity, as to be expected. Tables 4-
5 show that the performance deteriorates substantially for values of ¢ ., close to unity, due

to the bias that results from the truncation of lags for the first differences of regressors. It can
take a large lag order for the truncation bias to be negligible when the largest eigenvalue of
the dynamic specification (given by the lags of the dependent variable) is close to one. We
see quite a substantial bias when ¢, =0.9. Therefore, it is important that the CS-DL

approach is used when the speed of convergence towards equilibrium is not too slow and/or
T is sufficiently large so that biases arising from the approximation of dynamics by
distributed lag functions can be controlled.
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The robustness of the results to the number of unobserved factors (m) is investigated in
Table 6. This table provides a summary in the case of m =3 factors, which represents the
rank deficient case. It is interesting to note that despite the failure of the rank condition, the
CS-DL estimators continue to perform well (the results are almost unchanged as compared
with those in Table 1), while the CS-ARDL estimates are affected by two types of biases (the
time series bias and the bias due to rank deficiency) that operate in opposite directions.

Consider now the robustness of the results to the presence of unit roots in the unobserved
factors (Table 7) or in the regressors (Table 8). As can be seen the CS-DL estimators
continue to perform well when factors contain unit roots. Table 8, on the other hand, shows
large RMSE and low power for T =30 and 50, when the idiosyncratic errors have unit roots.
But, interestingly enough, the reported size is correct and biases are very small for all sample
sizes.

The results in Table 9 consider the robustness of the CS-DL estimators to the problem of
serial correlation in the errors, whilst those in Table 10 consider the robustness of these
estimators to the breaks in the error processes. As can be seen, and as predicted by the theory,
the CS-DL estimators are robust to both of these departures from the baseline scenario,
whereas the CS-ARDL approach is not. Recall, that CS-ARDL approach requires that the lag
orders are correctly specified, and does not allow for residual serial correlation and/or breaks
in the error processes, whilst CS-DL does.

Last but not least, the consequences of feedback effects from vy, to the regressors, x,, is

documented in Table 11. This table shows that the CS-ARDL approach is consistent
regardless of the feedback effects, provided that the lag orders are correctly specified, again
as predicted by the theory. But a satisfactory performance (in terms of bias and size of the
test) for the CS-ARDL approach requires T to be sufficiently large. On the other hand, in the
presence of feedbacks, the CS-DL estimators are inconsistent and show positive bias even for
T sufficiently large. But the bias due to feedback effects seem to be quite small; between -
0.02 and 0.06, and the CS-DL estimators tend to outperform the CS-ARDL estimators when
T <100.

Given the above MC results, and considering that output growth is only moderately
persistents, and given that the time dimension is 45 years, the CS-DL estimates are likely to
provide a valuable complement to the ARDL estimates in our empirical investigation below.

4.4 Monte Carlo findings on the improvement in estimation of short-run coefficients

As a final exercise, we consider if it is possible to improve on the estimation of short-run
coefficients by imposing the CS-DL estimates of the long-run, before estimating the short-run
coefficients. We consider the experiment that departs from the baseline model by assuming a
homogeneous long-run coefficient, whilst all the short-run slopes are heterogeneous, and use
the ARDL(1,0) as the data generating process. More specifically, we impose the CS-DL
pooled estimator of the long-run coefficient, éP, when estimating the short-run coefficients
using the CS-ARDL approach. In particular, we estimate the following unit-specific
regressions,

~ Pz
Ay, = C;i +4 (yi,t—l - ePXit)+ Zﬁli/,zt—/, + &y (42)

=0

for i=1,2,...,N , and the resulting mean group estimator of E (¢, )=1+ E(4,) is denoted by

®In our empirical application the first order autoregressive coefficient of output growth ranges from — 0.53 (Morocco) to 0.65 (Japan),
with mean and median of 0.274 and 0.273, respectively.
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- 18 ~
Pime = WZ(Dil’(Dil =1-4,
=

where /-f, is the least square estimate of A, based on (42). The results of these experiments are

summarized in Table 12. Imposing the CS-DL pooled estimator of the long-run coefficient
improves the small sample properties of the short-run estimates substantially, about 80-90%
reduction of the difference between the RMSE of the infeasible CS-ARDL estimator and the
RMSE of the unconstrained estimator when T =30.

We are now in a position to apply the various estimation techniques discussed in this paper to
our central empirical question of interest, namely the relationship between inflation, debt to
GDP and output growth across a panel of developed and emerging economies. But first we
provide an overview of the literature so that our empirical results can be placed within the
extant literature.

5 Effects of Inflation and Debt on Economic Growth: A Literature Review
5.1 Debtand growth

Economic theory provides mixed results on the relationship between public debt and growth.
Elmendorf1999 argue that profligate debt-generating fiscal policy (and high public debt) can
have a negative impact on long-term growth by crowding out private investment, although it
is argued that this effect is quantitatively small. The negative growth effect of public debt
could be larger in the presence of policy uncertainty or expectations of future confiscation
(possibly through inflation and financial repression). See, for example, Cochrane2011b and
Cochrane2011a. Contrary to this view, DelLong2012 argue that hysteresis arising from
recessions can lead to a situation in which expansionary fiscal policies may have positive
effect on long-run growth. Krugman1988 argues that nonlinearities and threshold effects can
arise from the presence of external debt overhang, but it is not clear whether such an
argument is applicable to advanced economies where the majority of debt-holders are
residents. Nonlinearities may also arise if there is a turning point above which public debt
suddenly becomes unsustainable - see  Ghosh2013.

Overall, the predictions of the theoretical literature on the long-run effects of public debt on
output growth are ambiguous, predicting negative as well as a positive effect under certain
conditions. Even if we rely on theoretical models that predict a negative relationship between
output growth and debt, we still need to estimate the magnitude of such effects empirically.
The empirical evidence on the relationship between debt and growth until recently focussed
on the role of external debt in developing countries, and so far there has been only a few
studies that include evidence on the developed economies. One such study is by
Reinhart2010 who argue for a non-linear relationship between debt and growth. Using a
sample of 20 advanced economies over the period 1946-2009, they split these countries into
four groups: (i) country-years for which public debt to GDP levels were below 30 percent
(low debt); (ii) country-years for which public debt to GDP levels were between 30 and 60
percent (medium debt); (iii) country-years for which public debt to GDP levels were between
60 and 90 percent (high debt); and (iv) country-years for which public debt to GDP levels
were above 90 percent (very high). They calculate the median and average GDP growth rates
for each group and show that there is generally a weak relationship between government debt
and economic growth for countries with public debt levels below 90% of GDP. However, for
countries with debt-to-GDP ratio over this threshold, they find that debt can have adverse
effects on growth. They show that in the high-debt group, median growth is approximately
one percentage point lower and average growth is nearly four percentage points lower as
compared to the other groups. They also perform a similar exercise for 24 emerging
economies over the periods 1946-2009 and 1900-2009.
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The analysis of Reinhart and Rogoff (RR) has generated a considerable degree of debate in
the literature. See, for example, Kumar2010, Checherita2012, Eberhardt2013, and
Reinhart2012; who discuss the choice of debt brackets used, changes in country coverage,
data frequency; econometric specification, and reverse causality going from output to debt.
See also Panizza2013 for a survey and additional references to the literature.

Kumar2010 study the impact of high public debt on subsequent growth of real per capita
GDP for a panel of 38 advanced and emerging market economies over the period 1970--
2007. They apply a variety of homogeneous estimation methodologies, such as pooled OLS,
fixed effects (FE) panel regression, and system GMM approach (to account for endogeneity
of growth regressors), and consider a variety of possible covariates of debt and growth. They
complement their analysis by a growth accounting framework which allows for an
exploration of the channels (factor accumulation versus factor productivity) through which
public debt may influence growth. Checherita2012 employ an alternative strategy to deal
with simultaneous determination of public debt and growth (by using external instruments).
They restrict their sample to 12 euro area countries over the period 1970-2008 and instrument
the debt-to-GDP ratio of a typical country at each point in time with the average debt-to-GDP
ratio of the other 11 countries in the sample during the same time period. With this strategy,
the authors find a non-linear relationship between debt and growth with a threshold ranging
between 90 and 100 percent of debt to GDP levels. They use fixed-effects, 2SLS and GMM
techniques for estimation and employ a quadratic functional form for the growth-debt
regression equation. They also analyze the channels through which public debt is likely to
affect economic growth.

The above studies address a number of important modelling issues not considered by
Reinhart and Rogoff, but they nevertheless employ panel data models that impose slope
homogeneity and do not adequately allow for cross-sectional dependence across individual
country errors. It is implicitly assumed that different countries converge to their equilibrium
at the same rate, and there are no spillover effects of debt overhang from one country to
another. These assumptions do not seem plausible given the diverse historical and
institutional differences that exist across countries, and the increasing degree of
interdependence of the economies in the global economy.

The paper which deals with some of these issues and is closest in approach to ours is by
Eberhardt2013, which studies the debt-growth relationship in the context of a heterogeneous
panel data model covering 105 countries over the period from 1972 to 2009. However, their
analysis is subject to three main problems. First, they include the capital stock along with the
level of debt as the two main variables determining the level of aggregate output. Given the
endogeneity of these variables, the analysis of the effects of debt on output becomes
complicated since changes in debt are likely to influence interest rates and hence investment,
and such indirect effects of changes in debt on the capital stock must also be taken into
account (see PesaranSmith2013 for a related discussion). Second, they assume the existence
of long-run relations between output, capital stock and debt across all countries in their
sample, without providing any empirical evidence to support it. Third, their analysis could be
subject to the reverse causality problem since they only include one lagged values of the
dependent variable and the regressors, and this might not be sufficient for the ARDL
specification to capture the feedback effects running from output growth to debt/GDP ratio.

5.2 Inflation and growth

Economic theory provides mixed predictions on the effects of inflation on economic growth.
Depending on how money is introduced into the model and the assumptions about its
functions, inflation can have either positive or negative effects on real variables such as
output and investment. Within a money-in-the-utility-function model, Sidrauskil967
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presents a superneutrality result where changes in the rate of money growth and inflation
have no effects on steady-state capital and output. The same effect is obtained by
Ireland1994 within a cash-in-advance model where money is needed in advance to finance
investment expenditures and at the same time capital accumulation affects money's role in the
payments system. Tobin1965 regards money as a substitute for capital and shows that higher
inflation enhances investment and causes a higher level of output. Bayoumil996 show that a
positive relationship between inflation and investment can also arise if there are distortions in
the tax system. Stockman1981 examines the implications of a cash-in-advance constraint
applying to investment and argues that higher inflation decreases steady-state real-money
balances and capital stock, and hence produces a reversed Tobin effect. Dornbusch1973
show that the effects of inflation on real variables are ambiguous if money is introduced into
the model through a transaction cost function. However, this ambiguity disappears when
money is introduced as a transaction device through a shopping-time technology,
Saving1971 and Kimbrough1986.

Gillman2005 surveys the theoretical literature on inflation and endogenous growth, and
show that a broad range of models can generate a negative association between inflation and
growth; see  Gommel1993 and DeGregorio1993 among others. They also analyze whether
the inflation--growth relationship is non-linear (becomes weaker as the inflation rate rises). In
such models, the inflation rate affects growth because it changes the marginal product of
capital, either that of physical capital (AK models), or that of human capital (AH models), or
that of both in combined capital models. Considering AK and AH models, inflation acts as a
tax on physical or human capital which decreases the marginal product of capital and lowers
growth. The non-linearity property of the inflation-growth relationship can be explained
through models that explicitly account for unemployment; see Akerlof2000. According to
these models, low inflation favors both employment and productivity, resulting in higher
capacity utilization, a lower output gap and, as a consequence, higher growth. Therefore, the
relationship between inflation and output growth may be positive for low levels of the
inflation rate.

There also exists a large empirical literature on the relationship between inflation and growth.
A Dbrief summary of these empirical findings is as follows. First, inflation could reduce
growth by lowering investment and productivity.  Barro2001 provides evidence for a
strongly significant negative effect of inflation on growth.  Brunol998 show that the
inflation-growth correlation is present only when they base their cross-section regressions on
annual observations, with the correlation weakening as longer term time averages are used.
There is also a strong inflation-growth relation with pooled annual data. Third, the
relationship between inflation and growth is highly non-linear. Khan2001 find a “threshold'
rate of inflation, above which the effect is strongly significant and negative, but below which
the effect is insignificant and positive. Gylfason2001a list some 17 studies for which all but
one find a significant decrease in the growth rate from increasing the inflation rate from 5 to
50%; while Charil996 review the empirical results from increasing the inflation rate from
10 to 20%, and report a significant fall in the growth rate within the interval, 0.2% to 0.7%.
Roubini1992 study the relationship between inflation and growth in a panel of 98 countries
over 1960-1985 and find that an increase in the annual rate of inflation from 5 to 50 percent
reduces per capita growth, ceteris paribus, by 2.2 percent per annum. Rousseau2001 report
a smaller but still significant negative effect of inflation on growth in their panel study of 84
countries during 1960-1995. The negative and highly non-linear inflation--growth effect is
also supported in  Judson1999, Ghosh1998, and Lopez2011. Forth, inflation volatility is
found to negatively affect production decisions, and hence growth; see Judson1999.

The inflation-growth relationship is not robust though, due to the sample selection bias,
temporal aggregation, and omission of consequential variables in levels. Trying to address
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these misspecifications, Ericsson2001, using 40 years of data (1953-1992), show that output
and inflation are positively related. They find that, for most G-7 countries, annual time series
of inflation and the log-level of output are cointegrated, thus rejecting the existence of a long-
run relation between output growth and inflation. Following a different econometric
approach, Bullard1995, using a large sample of postwar countries, find that a permanent
shock to inflation is not associated with a long-run change in real output for high inflation
economies. Using instrumental variables to account for inflation--growth endogeneity bias,
Gillman2004b show that the negative non-linear effect is reinstated at all positive inflation
levels for both developed and developing countries.

6. Empirical Results

In this section, we examine the long-term effects of debt and inflation on economic growth
using both ARDL and DL specifications. We also look at the effects of debt thresholds and
its trajectory on long-run growth. But first we begin with a description of the data used.

6.1 Data sources

The inflation and output growth are calculated based on consumer price index (CPI) and real
gross domestic product (GDP) data series obtained from the International Monetary Fund
International Financial Statistics database, except for the CPI data for Brazil, China and
Tunisia which are obtained from the International Monetary Fund, World Economic Outlook
database, and the CPI data for the UK, which is obtained from the Reinhart2010 Growth in
a Time of Debt database.

The gross government debt/GDP data series are from Reinhart2011 which are updated and
made available online (http://www.carmenreinhart.com/data/browse-by-topic/topics/9/),
except for Iran, Morocco, Nigeria, and Syria for which the International Monetary Fund FAD
Historical Public Debt database was used instead. We focus on gross debt data due to
difficulty of collecting net debt data on a consistent basis over time and across countries.
Moreover, we use public debt at the general government level for as many countries as
possible (Austria, Belgium, Germany, Italy, Netherlands, New Zealand, Singapore, Spain,
Sweden, and Tunisia), but given the lack of general public debt data for many countries,
central government debt data is used as an alternative.’

Since our analysis allows for slope heterogeneity across countries, we need a sufficient
number of time periods to estimate country-specific coefficients. To this end, we include only
countries in our sample for which we have at least 30 consecutive annual observations on
debt, inflation and GDP. Subject to this requirement we ended up with 40 countries listed in
Table 13. These countries cover most regions in the world and include advanced, emerging
and developing countries. To account for error cross-sectional dependence, we need to form
cross-section averages based on a sufficient number of units, and hence set the minimum
cross-section dimension to 20. Overall, we ended up with an unbalanced panel covering the
sample period 1965-2010, with T, =30, and N, =20 across all countries and time

periods."

6.2 Estimates based on the ARDL approach not augmented by CS averages

We first consider the long-run effects of debt and inflation on output growth using the
traditional panel ARDL approach, in which the long-run effects are calculated from OLS
estimates of the short-run coefficients in the following equation:

*The complete dataset, Matlab codes, and Stata do files needed to generate the empirical results in this paper are available from
people.ds.cam.ac.uk/km418.

1See Section 7 in ChudikPesaran2013s for further details on the application of the CCE estimators to unbalanced panels.
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p P
Ay =G + Z(oifAyi,t-f + Z‘ﬁifxi,t—/ + Uy, (43)
/=1 =0

where y, is the log of real GDP, x, =(Ad,,,), d, is the log of debt to GDP ratio, and 7,

is the inflation rate. In a series of papers, Pesaran1995, Pesaran1997, and Pesaran1999
show that the traditional ARDL approach can be used for long-run analysis, and that the
ARDL methodology is valid regardless of whether the regressors are exogenous, or
endogenous, and irrespective of whether the underlying variables are 1(0) or 1(1). These

features of the panel ARDL approach are appealing as reverse causality could be very
important in our empirical application. It is well recognized that while high debt burden may
have an adverse impact on economic growth, low GDP growth (by reducing tax revenues and
increasing public expenditures) could also lead to high debt to GDP ratios. We are indeed
interested in looking at the relationship between public debt, inflation and output growth after
accounting for these possible feedback effects. Our panel ARDL specification also allows for
a significant degree of cross-county heterogeneity and accounts for the fact that the effect of
public debt and inflation on growth could vary across countries (particularly in the short run),
depending on country-specific factors such as institutions, geographical location, or cultural
heritage.

As mentioned in Section 2 and illustrated by MC simulations in Section 4, sufficiently long
lags are necessary for the consistency of the ARDL approach, whereas specifying longer lags
than necessary can lead to estimates with poor small sample properties. We use the same lag
order, p, for all variables/countries, but consider different values of p in the range of 1 to 3.

Given that we are working with growth rates which are only moderately persistent, a lag
order of 3 should be sufficient to fully account for the short-run dynamics. Also, using the
same lag order across all variables and countries help reduce the possible adverse effects of
data mining that could accompany the use of country and variable specific lag order selection
procedures such as Akaike or Schwarz criteria. Note that our primary focus here is on the
long-run estimates rather than the specific dynamics that might be relevant for a particular
country.

The Least Squares (LS) estimates obtained from the panel ARDL specifications are reported
for three cases, (a), (b) and (c), in Tables 14 and 15.** Panel (a) depicts the results when only
the debt/GDP variable is included in the ARDL model, panel (b) when only inflation is
included, and panel (c) when both variables are included. Each panel gives the average
estimates of the long-run effects of debt/GDP growth and inflation on GDP growth (denoted
by 6,, and 6_), and the mean estimate of the coefficients of the error correction term,
denoted by A . For each lag order p=1, 2 and 3, we provide fixed effects (FE) estimates in
Table 14 (assuming slope homogeneity), and Mean Group (MG) estimates in Table 15 that
allow for slope coefficients to vary across countries. As shown in  Pesaran1995, the FE
estimators will be inconsistent in the presence of slope heterogeneity even if T is sufficiently
large. In contrast the MG estimates are consistent under fairly general conditions so long as
the errors are cross-sectionally independent.

The results across all specifications suggest an inverse relationship between debt/GDP
growth (inflation) and economic growth. Specifically, for case (a) Tables 14 and 15 show that
the coefficients of debt/GDP growth are negative and always statistically significant at the 1
percent level, with their values ranging from —0.055 to —0.075 across various estimation

"ndividual country estimates are available on request, but it should be noted that they are likely to be individually unreliable given the fact
that the time dimension of the panel is relatively small.
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techniques and lag orders." For case (b) and when considering the FE estimates, we note that
the negative effects of inflation on output growth is —0.025 at various lag orders, while the
MG estimates are much larger (falling between —0.054 and —0.104 ). These estimates are
statistically significant at the 1 percent level, with one exception.

Focusing on case (c), where we jointly model debt/GDP growth, inflation, and output growth,
we note that a one percentage point increase in debt-to-GDP growth is associated with a
slowdown in GDP growth of between 0.044 and 0.083 percentage points (statistically
significant at the 1% level), depending on the selected lag order and estimator, with the MG
estimates being generally larger than those of the FE. On the other hand, while the long-run
growth effects of inflation are negative (between —0.024 and —0.026) and significant at 1
percent level based on the FE estimates, the MG coefficients are only significant in the case
of p =1, suggesting that once we control for debt/GDP and allow for longer lags (p =2 and

3) the long-run impact of inflation on output growth is no longer evident. Overall, the results
presented in Tables 14 and 15 are suggestive of negative relationships between debt,
inflation, and growth. However, the estimated coefficients vary considerably with different
lag augmentation and with/without pooling. It is also worth noting that in all cases, (a)--(c) in
Tables 14 and 15, the speed of adjustment to long-run equilibrium is very quick and is in line
with the relatively low persistence of output growth in the case of most countries. However,
this does not mean that the effects of changes to debt/GDP ratio will also be very quick on the
level of real output.

6.3 Estimates based on the CS-ARDL approach

The above panel ARDL methodology assumes that the errors in the debt-inflation-growth
relationships are cross-sectionally independent, which is likely to be problematic as there are
a number of factors such as trade and financial integration, external-debt financing of budget
deficits, and exposures to common shocks (i.e. oil price disturbances), that could lead to
cross-sectional error dependencies. These global factors are mostly unobserved and can
simultaneously affect both domestic growth and public debt, and can lead to badly biased
estimates if the unobserved common factors are indeed correlated with the regressors.

Tables 14 and 15 report the CD (Cross-section Dependence) test of Pesaran2004
(Pesaran2004, Pesaran2013), which is based on the average of the pair-wise correlations of
the OLS residuals from the individual-country regressions (a-c), and which under the null of
cross-section independence is distributed as standard normal.” For each p=12, and 3, we

observe that the error terms across countries in our model exhibit a considerable degree of
cross-sectional dependence as the reported CD statistics are highly significant with very large
test statistics. The presence of the cross-sectional dependence implies that estimates obtained
using standard panel ARDL models might be misleading. To overcome this problem, we
employ the CS-ARDL approach, based on ChudikPesaran2013a, which augments the ARDL
regressions with cross-sectional averages of the regressors, the dependant variable and a
sufficient number of their lags, which in our case is set to 3 regardless of p, the lag order

chosen for the underlying ARDL specification. More specifically, the cross-sectionally
augmented ARDL regressions are given by

p P 3.
AY, =G+ D O+ D BiXi + D Wy Zis + 6y, (44)
/=1 /=0 =0

“The reported standard errors are robust to cross-sectional heteroskedasticity and residual serial correlation asin Arellano1987.
BTheoretical properties of the CD test have been established in the case of strictly exogenous regressors and pure autoregressive models.
The properties of the CD test for dynamic panels that include lagged dependent variables and other (weakly or strictly exogenous) regressors
have not yet been investigated. However, the Monte Carlo findings reported in ChudikPesaran2013s suggest that the CD test continues to be
valid even when the panel data model contains lagged dependent variable and other regressors.
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where z; = (Ayt,i't) , and all the other variables are as defined in equation (43).

The estimation results are summarized in Table 16, where we provide MG estimates for the
three specifications, (a), (b), and (c), discussed above. For specification (a), we note that the
long-run estimates of the debt/GDP growth variable are somewhat larger (ranging between
—0.072 and —0.096) than those in Table 15, but still statistically significant at the 1 percent

level. The long-run effects of inflation on output growth are similar in most cases to those of
the ARDL estimates, except for the CCEMG estimate with p =3 which is not statistically

significant. Turning to specification (c), there is now more evidence for negative growth
effects of inflation in the long run as the estimates are significant (at the 1% level) in all cases
but one. The long-run effects of inflation on growth lies in the range of —0.080 and —0.164.
These estimates are much larger than those obtained in Table 15, as the latter does not take
into account the possibility that the unobserved common factors are correlated with the
regressors. The CD test statistics in Table 16, confirm a substantial decline in the average
pair-wise correlation of residuals after the cross-section augmentation of the ARDL models.
The coefficients of debt/GDP growth under specification (c) are also larger (between —0.079
to —0.120) using the CS-ARDL regressions, and all of the estimates are statistically
significant at the 1 percent level. Finally, the speed of convergence to equilibrium is very fast
(and in some instances faster than in the case without augmentation, see Tables 14--16). But
as noted earlier and due to the small sample bias in the estimates of the short-run dynamics,
the adjustment speeds reported in these tables should be viewed as indicative.

6.4 Estimates based on the CS-DL approach

The results in Tables 14-16 provide evidence of long-run negative effects of both debt and
inflation on GDP growth. However, as discussed earlier in the paper, the ARDL and CS-
ARDL approaches have their own drawbacks. The sampling uncertainty could be large when
the time dimension is moderate and the performance of the estimators also depends on a
correct specification of the lag orders of the underlying ARDL specifications. The direct
approach to estimating the long-run relationships proposed in this paper (the CS-DL method),
is more generally applicable and only requires that a truncation lag order is selected. Also, as
can be seen from Section 4, this method has better small sample performance for moderate
values of T, which is often the case in applied work. Furthermore, it is robust to a number of
departures from the baseline specification such as residual serial correlation, and possible
breaks in the error processes.

We estimate the CS-DL versions of the three specifications (a)-(c) and obtain the MG
estimates for different truncation lag orders, p =1,2,3. We always include three lags of the

cross-sectional averages of the regressors in all specifications; namely, we run the following
regressions

. p-1 . I T
A, = C +0,X, + D B,AX , + @AY, + D 0 Xes + 8, (45)
/=0 =0

where the regressors are defined as in equation (43), with p =1,2,3.

The MG estimates based on the above CS-DL regressions are summarized in Table 17.
Overall, the estimates are similar to those obtained based on panel ARDL and CS-ARDL

regressions given in Tables 14--16. Specifically, the mean group estimates, %MG, of the
effects of debt/GDP and inflation on economic growth are negative and statistically
significant (in most cases at the 1% level). The estimated coefficients for the debt/GDP
growth variable range from —0.068 to —0.087, and those of inflation fall between —0.066
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and —0.089 . These estimates fall in a narrow range and tend to be robust to the choice of the
truncation lag order. The estimates indicate that, if the debt to GDP ratio is raised
permanently, then it will negatively affect economic growth in the long run. But if the
increase is temporary and the debt to GDP ratio is actually brought back to its normal level,
then there are no long-run adverse effects on economic growth.

However, one drawback of the CS-DL approach is that the estimated long-run effects are
only consistent when the feedback effects from the lagged values of the dependent variable to
the regressors are absent, although as we have seen in the MC section that, even with this
bias, the performance of CS-DL in terms of RMSE is much better than that of the CS-ARDL
approach when T is moderate (which is the case in our empirical application). Having said
that, it should be noted that no one estimator is perfect and each technique involves a trade-
off. Estimators that effectively address a specific econometric problem may lead to a different
type of bias. For instance, while the CS-DL estimator is capable of dealing with many
modeling issues (cross sectional dependences, robustness to different lag-orders, serial
correlations in errors, and breaks in country-specific error processes), it leaves the feedback
effects problem unresolved. To deal with different types of econometric issues, and to ensure
more robust results, we conducted the debt-inflation-growth exercise based on a range of
estimation methods (ARDL, CS-ARDL, and CS-DL). We note that the direction/sign of the
long-run relationship between debt and growth is always negative and statistically significant
(across different specification and lag orders). This is also the case for the relationship
between inflation and growth in most of the models estimated (20 out of 24 coefficients).
This gives one more assurance that debt and inflation have a dampening effect on long-run
output growth, but given the different biases associated with the direct and indirect
approaches to estimating the long-run relationship between debt, inflation and growth, we
expect the exact magnitude of the effects to be somewhere in between the two estimates (CS-
ARDL and CS-DL).

Given that the CS-DL approach is robust to the possibility of unit roots in variables, we also
investigate the long-run effects of the log level of debt to GDP ratio and inflation on the log
level of output. The results are reported in Table 18 from which we observe that a one percent
increase in the level of debt/GDP, if sustained, reduces real output by —0.048 to —0.068
percent. These estimates continue to be statistically highly significant in all cases, and
suggest, for example, that if a country’'s debt-to-GDP rises from its normal level of say 70%
to 90% and if this increase is maintained, then eventually the country's output might decline
by as much as 1.7%.

Finally, we also run regressions where inflation is replaced with the log of CPI in the
regressions of log GDP levels and obtained very similar results for the effects of debt/GDP
on real output. (Table 18). However, in contrast, the long-run effects of inflation (or log of
CPI) on output growth in the level regressions turn out not to be statistically significant.

6.5 Debt/GDP threshold effects on growth

The above results clearly suggest that maintaining high levels of debt-to-GDP are likely to be
unsustainable, and if persistent can lead to long-run growth stagnation. However, the
estimates obtained so far do not provide any information regarding the normal or acceptable
levels of debt-to-GDP. This issue has been addressed by Reinhart2010 and Checherita2012
who argue for the presence of a threshold effect in the relationship between debt/GDP and
economic growth. RR's analysis is informal and, as noted in our literature review, involves in
comparisons of average growth rate differentials across economies classified by their average
debt/GDP ratios. They find that these differentials peak when debt/GDP ratio is around 90-
100%. Krugman1988 and Ghosh2013 also consider possible threshold effects in the
relationship between external debt and output growth, which is known as the debt overhang.
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However, these results are based on strong homogeneity restrictions, in particular the
assumption that there exists a universal debt/GDP threshold, applicable to all countries
equally. It is further assumed (albeit implicitly) that all countries are similarly affected by the
threshold effect.

The debt overhang phenomenon in itself seems plausible. What is difficult to accept is the
assumption that the level of debt/GDP threshold and its effects on output growth are the same
across all countries irrespective of their degree of external debt exposure, historical
performance in servicing their public debt, and market perceptions of their economic
potential in meeting their debt obligations in future. Due to such intrinsic cross-country
heterogeneities, debt thresholds are most-likely country specific and must be estimated as
such. However, identification and estimation of country-specific debt thresholds are not
feasible due to short time-series data that are currently available.

To explore the importance of heterogeneity and potential nonlinearity in the debt-growth
relationship, initially we begin with the following baseline homogeneous panel data model

Ayit = Cr + }/7: Iit (T) + eit’ (46)

where 1,(r) is a “threshold dummy", defined by the indicator variable I(d, >logz) which

takes the value of 1 if debt/GDP is above the given threshold value of 7, and zero otherwise.
As before vy, is the log of real GDP, and d,, is the log of debt/GDP. In addition to assuming
a universal threshold, 7, this model also assumes that the coefficients of the "threshold
dummy", y_, is the same across all countries whose debt/GDP ratio is above the same

threshold. c, is the average GDP growth of countries with debt/GDP below 7 .

The estimates of ¢ and y_ for values of 7 =30%, 40%, .., 90%, are given on the top
panel of Table 19.* The results show estimates of c, that are quite stable across different
values of z, which is in line with the rather small estimates obtained for y_. The differences

between average GDP growth for countries above a certain debt/GDP ratio and countries
below the same threshold level are relatively flat over a range of values for 7 . The estimates
of y, also show that while average GDP growth declines when the public debt/GDP ratio

increases, one cannot find a tipping point beyond which long-term growth is reduced
substantially.

We now consider a less restrictive model which uses a universal threshold, but allows the
effects of the threshold dummy to differ across countries. This is a more plausible
specification since it allows the threshold dummy, for example, to have a zero loading for a
country like Japan, and possibly a large negative estimate for a country like Greece or Spain.
Specifically, we consider

Ay = +7; b (7) + &, (47)

and report MG estimates of ¢ and y,, defined as averages of the estimates of ¢, and y,,
across countries with a given threshold, in Table 19. The results are qualitatively similar to
those obtained for the homogenous case, but with larger estimates for y_. If anything, the

heterogenous specification is more supportive of the Reinhart and Rogoff position, partly due
to the fact that it does not treat all the countries similarly.

Although specification (47) deals with heterogeneity, it does not allow for cross-country
dependencies, dynamics, and non-threshold effects of debt/GDP growth and inflation

“we report heteroscedasticity-robust standard errors.
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variables on output growth. To address these problems, we consider the following
specification which is a generalization of our earlier set up:

. 2, _ 3 . —
AYy =G, + 7, L (T) + 0, X, + Zai/,,rAXi,t—/, +oy Ay, + Z(’Oi,x/,,rXt‘/' + €its (48)
=0 =0

where x, =(Ad,,7,). The MG estimates of the parameters of interest, . and @._, are

summarized in Table 19. In sharp contrast to the estimates based on (46) and (47), none of
the estimates of y_ are statistically significant. We note that, as before, the long-run effects of
debt on growth are always statistically significant and negative in the range of —0.063 and
—0.109 depending on . Therefore, our results show that there is no simple common
threshold for the level of government debt above which growth is more adversely affected.

As our results have consistently shown that higher and sustained debt/GDP growth tend to
adversely affect output growth, and having shown that the presence of simple threshold
effects is not supported by the data, we turned to other non-linear threshold effects which
became binding only in the case of countries with rising debt/GDP rates. Accordingly, we
estimated the following specification,

. 2 .
Ay = ¢, + 7 L (7) + 74 [ln (7)x max(O, Ad,, )]"‘ 0,.x; + Zai/,rAXi,t—/

/=0

PR 3 ' —
+ @y, AY, + ZO)i'X/VrXt—/ +e,, (49)

/=0

which is the same as (48), except for the interactive term, I, () x max(0,Ad,, ), which is non-
zero only if Ad,, >0, and d, >log(z). The MG estimates for this model are summarized in

Table 20. The results show that when samples of country episodes with an upward debt
trajectory above certain thresholds are chosen, the coefficients of the interactive threshold

+

U
dummy variable (i.e. y_) becomes negative and statistically significant if debt/GDP ratio is

0
above 60% . However, as before the coefficient of the threshold dummy (y_.) is not
statistically significant. We therefore remove 1, (z) and instead estimate

. 2 . _ 3 . —
Ay =C, +7;, [I i(7) % maX(O’ Adit)]+ 0, + Zai/,,rAXi,t—/, +oy Ay, + Z(’Oi,x/,,rXt‘/' +8;,.(50)
=0 =0
Again we observe that the coefficients of the interactive threshold dummy variable are
negative and statistically significant beyond 60 percent debt/GDP ratio while at the same time

[]
the coefficient of debt growth (0.4 ) is significant and falls between —0.056 and —0.100,

which is in line with the results obtained in Tables 16-17. The results in Table 20 indicate that
debt trajectory is probably more important than the level of debt itself.

7. Concluding Remarks

Estimation of the long-run effects of public debt on economic growth has received renewed
interest among economists and policy makers in the aftermath of the global financial crisis
and the European sovereign debt crisis. Due to a significant worsening of public finances in
many advanced economics and more limited fiscal space in these countries (compared with
2008), the interaction between public debt and economic growth is attracting greater
attention. Recent sovereign debt problems in Greece and other European economies and
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negative feedback loops between sovereigns and the banking system have also contributed to
this renewed interest in the interplay between public debt and economic growth, and in
general on the design of policies that balance short-run gains from fiscal expansion with
possible adverse effects on growth in the long run. This paper revisited the question of the
long-run effects of debt on growth empirically in a dynamic heterogeneous and cross-
sectionally correlated unbalanced panel of countries. Our findings suggest that there is a
significant negative long-run relationship between rising debt and economic growth, and that
the trajectory of the debt can have more important consequences for economic growth than
the level of the debt itself, particularly beyond certain debt level thresholds.

In particular, our results show that following episodes of increasing public debt, governments
need to adopt fiscal measures that credibly reduce the overall debt/GDP ratio to normal levels
in order to prevent the negative long-run growth effects of debt. This policy is compatible
with Keynesian fiscal deficit spending, so long as it is coupled with credible fiscal policy
announcements that aim at reducing the debt burden to levels considered as normal for the
country in question. Our analysis does not provide any guidelines as to what might be
considered normal levels of debt/GDP ratio, except in cases where debt/GDP ratio is high and
rising, and there is no credible expectations of a reversal in the debt/GDP trajectory.

Estimation of long-run effects is an important applied problem in many fields of economics.
We have discussed how to estimate long-run effects in a typical macroeconomic panel, where
errors are cross-sectionally dependent, slopes are heterogeneous, and dynamic effects include
lagged values of the dependent variable. We have provided new Monte Carlo results showing
the robustness of the estimates of the long-run effects based on panel ARDL models to the
endogeneity problem. We have also contributed to the econometric analysis of long-run
effects by proposing a new cross-section augmented distributed lag (CS-DL) approach which
is robust to residual serial correlation, breaks in error processes and dynamic
misspecifications. But unlike the ARDL approach, the CS-DL procedure is not robust to the
endogeneity problem, and could be subject to simultaneity bias. Nevertheless, the extensive
Monte Carlo experiments reported in the paper suggest that the endogeneity bias of the CS-
DL approach is more than compensated for its better small sample performance as compared
to the ARDL procedure when the time dimension is not very large. ARDL seems to dominate
CS-DL only if the time dimension is sufficiently large, which is often lacking in empirical
applications.
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Appendix

Table 1: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (6 ) in Baseline Experiment - DGP is
ARDL(2,1) model with heterogeneous coefficients, ¢, = 0.6, stationary regressors, m = 2 factors, no feedback effectsand p, =0.

Bias ( x100 ) Root Mean Square Errors ( x100 ) Size (5% level, H0 :0=1) Power (5% level, Hl (0= 1.2)
(N,T) 30 [ 50 [ 100 | 150 | 200 30 [ 50 [ 100 | 150 [ 200 30 [ 50 [ 100 | 150 | 200 30 [ 50 [ 100 | 150 [ 200
- — [rws -

CS-DL mean group ( py =0, p, = [T ] and P = Py -1
30 -0.65 -0.49 0.04 -0.11 -0.15 16.88 11.24 8.55 7.34 6.44 6.35 6.15 7.75 5.80 6.40 28.30 50.20 70.30 80.10 87.15
50 -1.12 -1.00 -0.34 -0.12 -0.03 13.19 8.83 6.33 5.82 4.92 5.90 6.15 5.25 6.45 5.20 39.45 70.20 89.10 93.45 97.80
100 -1.32 -0.92 -0.09 -0.11 0.15 9.66 6.25 4.49 4.03 3.56 5.95 6.30 5.55 4.50 5.45 62.95 92.45 99.50 99.75 | 100.00
150 -1.19 -0.96 -0.11 0.16 -0.05 7.91 5.24 3.78 3.38 2.94 5.90 6.50 5.90 6.25 5.75 79.45 98.20 99.85 | 100.00 | 100.00
200 -1.06 -0.75 -0.24 -0.07 0.03 6.70 4.38 3.17 2.86 247 5.60 6.00 4.85 5.10 4.50 88.65 99.80 | 100.00 | 100.00 | 100.00

- _[rus = _

CS-DL pooled ( p7 =0, py = [T1 ]and pP=pg 1)
30 -0.40 -0.19 0.16 -0.08 -0.04 15.31 10.44 8.12 7.10 6.41 6.95 6.60 7.20 6.95 6.50 33.75 53.65 73.15 82.45 88.25
50 -0.93 -1.00 -0.29 -0.16 -0.06 11.47 8.31 6.08 5.55 4.80 6.00 6.70 5.70 6.00 4.60 47.05 75.50 91.40 94.80 97.80
100 -1.09 -0.83 -0.13 -0.10 0.14 8.17 5.88 4.26 3.90 3.53 5.85 6.35 5.20 4.60 5.80 74.20 95.10 99.75 99.90 99.95
150 -1.02 -0.72 -0.09 0.11 -0.02 6.83 4.82 3.55 3.28 2.87 5.90 6.10 5.80 5.95 5.55 87.60 98.95 99.95 | 100.00 | 100.00
200 -0.81 -0.68 -0.22 -0.06 0.03 5.89 411 3.04 2.74 2.43 5.25 5.70 5.20 5.15 5.05 94.55 99.95 | 100.00 | 100.00 | 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with p, = [T v ).
30 -10.40 -3.87 -1.73 -1.38 -0.88 | 361.68 20.62 7.59 6.24 5.54 10.75 9.80 9.45 8.25 7.50 39.95 66.05 86.05 94.10 96.00
50 3.72 -3.96 -2.12 -1.30 -1.00 182.36 9.56 5.83 4.89 4.32 10.45 12.75 8.10 7.65 6.55 45.40 81.30 98.00 98.90 99.70
100 17.57 -4.03 -2.02 -1.39 -0.83 | 966.97 7.31 4.34 3.58 3.16 12.90 13.90 10.05 8.45 8.05 61.30 96.40 | 100.00 | 100.00 | 100.00
150 -9.46 -3.93 -2.03 -1.20 -1.07 159.90 6.46 3.84 3.03 2.68 13.65 18.45 12.05 9.45 8.95 67.60 99.50 | 100.00 | 100.00 | 100.00
200 11.29 -3.97 -2.15 -1.42 -1.01 | 678.37 6.66 3.52 2.79 2.31 13.90 20.10 13.10 11.05 7.70 71.00 99.40 | 100.00 | 100.00 | 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with D, = [T vs ]).
30 -23.29 -26.91 | -23.58 -22.66 | -22.01 | 274.46 28.91 24.83 23.77 22.99 58.05 75.70 85.90 90.40 91.95 86.10 98.00 99.90 | 100.00 | 100.00
50 -27.78 -27.49 | -23.95 -22.72 | -22.28 | 109.97 28.68 24.70 23.36 22.83 73.20 90.75 97.25 98.60 99.25 92.00 99.80 | 100.00 | 100.00 | 100.00
100 -31.85 -27.64 | -24.18 -22.94 | -22.21 62.82 28.23 24.54 23.26 22.50 87.75 99.45 | 100.00 | 100.00 | 100.00 96.10 | 100.00 | 100.00 | 100.00 | 100.00
150 -30.11 -27.60 | -24.01 -22.82 | -22.34 81.52 28.02 24.26 23.05 22.53 93.35 99.90 | 100.00 | 100.00 | 100.00 97.20 | 100.00 | 100.00 | 100.00 | 100.00
200 -31.20 -27.73 | -24.20 -22.96 | -22.40 50.42 28.04 24.39 23.12 22.55 94.25 | 100.00 | 100.00 | 100.00 | 100.00 97.30 | 100.00 | 100.00 | 100.00 | 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations
generated according to (40)-(41) with a, =0.6. The knowledge of lag orders is not used in the estimation stage and the integer part of T** gives 3,3,4,5 and 5 for T =30,50,100,150 and 200 and 200, respectively.
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Table 2: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (8 ) in the Case of Homogeneous Long-
Run: DGP is ARDL(2,1) model with homogeneous long-run, heterogeneous short-run, ¢, = 0.6, stationary regressors, m =2 factors, no

feedback effectsand p, =0.

Bias (x100) Root Mean Square Errors ( X 100) size (5% level, H, : 0 = 1) Pover (5% level, H, : 6 =1.2)
(N,T) 30 [ 50 | 100 | 150 [ 200 30 | 50 100 [ 150 | 200 30 50 [ 100 [ 150 | 200 30 [ 50 | 100 [ 150 200
— — T3 _

CS-DL mean group ( Py = 0, py = [T ] and p=p,—1)
30 -1.59 -0.63 0.00 -0.05 0.01 16.55 10.27 7.40 6.21 5.31 6.00 5.30 6.40 5.25 5.85 30.85 55.85 78.45 88.30 95.05
50 -1.49 -0.95 -0.34 -0.02 -0.11 12.92 8.04 5.89 4.97 4.22 5.25 5.85 6.55 5.60 6.30 41.75 74.65 93.15 97.30 99.55
100 -0.96 -0.55 -0.20 0.02 0.02 9.16 5.76 4.09 3.53 3.02 5.10 5.70 5.40 5.10 5.70 64.90 94.40 99.75 100.00 100.00
150 -1.06 -0.83 -0.18 0.00 -0.10 7.63 4.94 3.35 2.88 241 5.45 6.50 5.45 5.35 5.35 79.55 98.70 100.00 100.00 100.00
200 -1.10 -0.77 0.02 -0.02 -0.08 6.47 4.22 2.87 2.52 2.10 4.60 5.95 5.20 5.30 5.00 89.70 99.90 100.00 100.00 100.00

— — T3 _

CS-DL pooled ( p7 =0, Py = T ] and P = Py -1
30 -0.97 -0.42 -0.04 -0.08 0.04 14.33 9.31 6.81 5.83 4.92 7.00 5.55 6.75 5.50 5.95 36.45 62.00 84.30 91.90 97.00
50 -1.01 -0.83 -0.29 -0.02 -0.09 11.07 7.38 5.40 4.59 3.91 5.90 5.20 6.20 5.30 6.85 49.75 80.45 95.50 98.15 99.75
100 -0.72 -0.51 -0.16 0.00 0.05 7.87 5.32 3.76 3.21 2.76 5.30 5.70 5.45 5.60 5.80 76.25 96.60 99.85 100.00 100.00
150 -0.80 -0.61 -0.14 0.05 -0.08 6.55 4.36 3.06 2.59 2.24 6.00 6.05 5.40 5.05 5.15 89.55 99.80 100.00 100.00 100.00
200 -0.95 -0.67 0.04 -0.03 -0.07 5.49 3.83 2.59 2.29 1.91 5.00 6.35 5.10 5.60 5.25 96.15 100.00 100.00 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with P, = T 1/3]).
30 -0.25 -3.59 -1.80 -1.24 -0.80 284.59 10.67 6.61 5.00 4.10 10.90 9.90 10.00 8.30 7.90 41.75 72.45 92.20 98.40 99.65
50 -8.02 -3.87 -2.03 -1.39 -1.03 85.61 8.89 5.21 4.08 3.37 10.80 11.10 9.65 9.75 8.55 50.70 85.65 99.35 99.90 100.00
100 -3.69 -3.87 -2.17 -1.38 -0.95 154.40 6.94 4.03 3.01 2.45 12.25 14.85 12.45 10.05 9.10 62.05 97.65 100.00 100.00 100.00
150 -0.25 -3.94 -2.11 -1.37 -1.06 90.79 6.27 3.51 2.60 2.12 14.05 18.10 14.80 12.30 11.75 67.95 99.50 100.00 100.00 100.00
200 -1.53 -3.98 -2.06 -1.37 -1.05 320.07 5.75 3.16 2.39 1.92 15.25 22.55 16.25 14.25 12.15 71.90 99.70 100.00 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with P, = T 1/3]).
30 -30.79 | -27.20 | -23.78 | -22.80 | -22.12 55.20 28.90 24.89 23.63 22.85 62.55 81.15 91.10 96.25 98.30 87.00 98.90 100.00 100.00 100.00
50 -32.12 | -27.63 | -24.23 | -23.14 | -22.57 47.11 28.66 24.88 23.66 23.00 76.85 94.25 99.05 99.75 100.00 94.25 99.90 100.00 100.00 100.00
100 -34.77 | -27.78 | -24.41 | -23.21 | -22.57 252.97 28.33 24.72 23.46 22.79 89.85 99.60 99.95 100.00 100.00 96.65 100.00 100.00 100.00 100.00
150 -32.53 | -27.88 | -24.35 | -23.16 | -22.62 36.50 28.27 24.56 23.33 22.76 92.55 99.90 100.00 100.00 100.00 96.90 100.00 100.00 100.00 100.00
200 -33.96 | -27.90 | -24.38 | -23.16 | -22.63 53.98 28.17 24.54 23.28 22.75 94.35 99.85 100.00 100.00 100.00 97.05 99.95 100.00 100.00 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations
generated according to (40)-(41) with a,=06- The knowledge of lag orders is not used in the estimation stage and the integer part of T gives 3,3,4,5and 5 for T=30,50,100,150, and 200, respectively.
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Table 3: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (0 ) in the Case of Homogeneous Short-
Run. DGP is ARDL(2,1) models with homogeneous short-run, ¢, = 0.6, stationary regressors, m = 2 factors, no feedback effects and

P;=0.
Bias (x100) Root Mean Square Errors (X 100) size (5% level, H, 1 0 = 1) Power (5% level, H, 10 =1.2)
(N,T) 30 [ 50 [ 100 [ 150 | 200 30 | 50 [ 100 | 150 [ 200 30 [ 50 100 150 200 30 | 50 [ 100 [ 150 200
— — T3 _
CS-DL mean group ( Py = 0, py = [T ] and P= py—1)
30 -2.20 -1.52 -0.09 | -0.34 | -0.35 19.01 12.19 8.55 7.37 6.14 7.25 6.00 6.40 5.75 5.70 27.80 49.20 69.05 80.30 90.00
50 -2.23 -1.69 -0.51 0.17 0.05 14.93 9.35 6.85 5.79 4.84 6.10 5.45 6.30 6.55 5.60 35.95 67.20 86.15 92.40 97.25
100 -2.24 -1.84 -0.36 | -0.21 0.06 10.55 6.93 4.68 4.01 3.33 6.10 7.15 5.45 5.10 4.90 59.10 89.95 98.75 99.90 100.00
150 -1.98 -1.99 -0.47 | -0.11 | -0.03 8.79 5.82 3.91 3.35 2.66 6.30 7.30 6.50 5.35 4.20 75.35 98.00 99.95 100.00 | 100.00
200 -2.22 -1.86 -0.35 | -0.20 | -0.01 7.94 4.96 3.38 2.85 2.38 6.70 6.90 5.25 4.75 4.80 84.40 99.65 100.00 100.00 | 100.00
= — / = —
CS-DL pooled ( Py = 0.p, = [T”] and p= py—1)
30 -1.94 -1.39 -0.03 | -0.35 | -0.44 16.68 10.97 7.95 6.83 5.81 7.05 6.00 6.55 6.20 5.85 32.40 54.20 74.35 84.85 93.15
50 -1.96 -1.45 -0.40 0.16 0.02 12.88 8.70 6.29 5.36 4.43 6.80 6.65 6.25 6.60 5.45 44.55 72.80 89.75 95.50 98.75
100 -2.00 -1.66 -0.31 | -0.16 0.04 9.10 6.34 4.37 3.70 3.07 6.25 6.10 6.20 5.35 5.25 70.55 93.50 99.30 99.95 100.00
150 -1.68 -1.62 -0.43 | -0.08 | -0.04 7.61 5.22 3.57 3.05 2.48 6.40 7.10 6.00 4.95 4.05 84.15 99.25 100.00 100.00 | 100.00
200 -1.94 -1.61 -0.31 | -0.19 | -0.04 6.76 4.50 3.13 2.59 2.20 6.95 6.55 5.05 3.95 4.45 92.70 99.75 100.00 100.00 | 100.00
Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with p, = [T 1/3]).
30 -14.08 -3.81 -1.92 | -1.59 | -1.26 310.27 12.81 7.66 6.02 5.04 10.50 10.45 9.20 9.40 9.35 32.50 61.25 84.10 95.30 98.25
50 -4.56 -4.15 -214 | -1.35 | -1.00 242.69 10.59 6.20 4.72 3.98 10.15 11.85 9.80 8.75 8.95 37.90 76.00 96.15 99.50 99.75
100 2.62 -4.32 -228 | -151 | -111 203.52 8.24 4.61 3.48 2.88 10.70 14.15 11.60 9.35 9.25 47.05 93.10 99.85 100.00 | 100.00
150 -3.39 -4.50 -2.35 | -1.56 | -1.12 163.77 7.29 4.09 3.03 2.43 9.90 18.25 14.30 12.10 9.25 51.30 98.35 100.00 100.00 | 100.00
200 -13.55 -4.32 -231 | -164 ] -1.18 298.99 6.58 3.71 2.77 2.22 11.40 21.30 15.50 14.05 11.80 56.00 99.45 100.00 100.00 | 100.00
Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with P, = [T 1/3]).
30 -14.02 -10.86 -6.61 | -5.78 | -5.30 53.22 15.60 9.81 8.21 7.30 24.60 25.10 22.30 22.70 23.35 58.60 82.10 94.65 98.45 99.90
50 -15.83 -11.12 -7.07 | -5.88 | -5.26 67.84 14.14 9.05 741 6.59 30.70 34.25 30.60 31.40 33.65 71.95 93.60 99.90 99.95 10.00
100 -8.04 -11.36 -741 | -6.14 | -554 407.90 12.88 8.38 6.88 6.20 41.55 53.15 51.55 52.70 56.60 83.55 99.55 100.00 100.00 | 100.00
150 -15.24 -11.63 -7.51 | -6.24 | -554 43.70 12.68 8.17 6.77 5.99 50.75 68.95 68.25 70.15 72.20 88.85 100.00 100.00 100.00
100.00
200 -14.75 -11.53 -7.54 | -6.33 | -5.62 37.89 12.32 8.03 6.70 5.94 56.55 79.15 79.75 82.75 84.60 90.60 99.95 100.00 100.00
100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations

generated according to (40)-(41) with a, = 0.6. The knowledge of lag orders is not used in the estimation stage and the integer part of T s gives 3,3,4,5 and 5 for T=30,50,100,150 and 200, respectively.
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Table 4: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (0 ) in the Case of ARDL(1,0) Model
DGP is ARDL(1,0) model with heterogeneous coefficients, ¢, = 0.6, stationary regressors, m = 2 factors, no feedback effects and p, =0.

Bias ( XlOO) Root Mean Square Errors ( XlOO) Size (5% level, H0 :0=1) Power (5% level, Hl (0= 1.2)
(N,T) 30 | 50 100 [ 150 | 200 30 | 50 [ 100 | 150 | 200 30 [ 50 100 150 [ 200 30 | 50 [ 100 [ 150 200
— —|ruws —

CS-DL mean group ( p7 =0, Py = [T ] and P = Py -1
30 -2.81 -234 | -1.01 | -045 | -0.51 16.57 10.87 7.93 7.39 6.40 7.00 6.50 5.60 6.80 6.35 34.90 59.65 77.10 82.55 88.80
50 -2.77 -229 | -0.96 | -0.53 | -0.57 13.13 8.64 6.25 5.48 5.04 7.30 6.50 6.25 5.45 6.40 47.70 77.20 92.30 95.45 98.20
100 -2.34 -230 | -0.99 | -0.44 | -0.57 8.99 6.39 451 3.97 3.57 5.90 7.15 6.05 4.90 5.75 71.20 96.00 99.65 99.90 100.00
150 -2.50 -218 | -1.04 | -0.52 | -0.52 7.94 5.21 3.71 3.21 2.95 7.10 7.35 6.10 4.90 5.80 85.10 99.45 100.00 100.00 100.00
200 -2.95 -236 | -1.08 | -0.51 | -0.57 7.05 4.73 3.37 2.88 2.57 8.25 8.55 7.70 6.50 5.70 94.55 99.90 100.00 100.00 100.00

— — T3 —

CS-DL pooled ( Py = 0, p, = [T ] and P=p,—1)
30 -2.50 -2.03 | -0.98 | -0.38 | -0.55 14.54 10.27 7.74 7.23 6.34 6.60 7.20 6.10 6.65 5.90 39.80 62.10 79.85 82.80 89.35
50 -2.58 -210 | -0.81 | -0.51 | -0.52 11.58 8.08 6.09 5.31 4.95 6.85 6.50 6.15 5.75 5.60 55.75 81.10 93.30 96.45 98.40
100 -2.08 -214 | -0.88 | -0.37 | -0.54 7.97 6.04 4.31 3.89 3.51 5.70 7.25 6.15 5.40 6.10 80.65 96.75 99.80 99.95 100.00
150 -2.40 -1.92 | -0.92 | -049 | -0.46 6.89 4.88 3.54 3.10 2.90 7.25 7.10 5.80 5.10 5.55 93.30 99.70 100.00 100.00 100.00
200 -2.69 -214 | -0.96 | -0.44 | -0.49 6.22 4.39 3.22 2.75 2.53 8.25 7.75 6.75 6.05 5.60 98.45 100.00 100.00 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with [0, [T 1/3])
30 -20.46 -319 | -1.79 | -1.05 | -0.78 1278.76 10.93 7.21 6.12 5.43 9.95 9.10 7.80 7.70 6.80 39.75 66.70 87.80 93.50 96.25
50 -9.43 -3.23 | -1.59 | -1.12 | -0.88 356.48 8.81 5.55 4.70 4.34 8.95 9.90 7.20 7.25 6.60 48.55 81.60 97.10 99.15 99.70
100 -2.25 -3.30 | -1.72 | -1.13 | -0.96 99.43 6.69 4.25 3.42 3.11 9.05 12.20 9.20 6.95 7.60 58.00 97.15 99.95 100.00 100.00
150 -34.29 -295 | -1.83 | -1.15 | -0.87 819.84 5.85 3.63 2.94 2.65 11.15 11.85 10.50 8.60 8.60 65.35 98.90 100.00 100.00 100.00
200 -2.09 -3.32 | -1.76 | -1.18 | -0.93 101.18 6.98 3.22 2.59 2.30 11.70 16.50 10.80 8.95 7.70 70.55 99.45 100.00 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with pf = [T 1/3]).
30 -6.54 -4.05 | -1.86 | -0.96 | -0.64 19.35 9.58 6.56 5.50 4.98 13.80 12.15 9.75 8.60 6.90 62.55 82.50 93.95 96.85 98.10
50 -6.10 -452 | -1.89 | -1.25 | -0.89 26.10 8.02 5.05 4.35 4.04 17.55 14.40 9.00 7.40 6.65 76.65 95.00 99.25 99.75 99.85
100 -18.34 | 440 | -2.12 | -138 | -1.04 537.53 6.50 4.06 3.21 291 23.30 19.50 12.10 8.55 7.80 90.55 99.85 100.00 100.00 100.00
150 -11.14 | -426 | -2.27 | -143 | -1.01 129.28 5.75 3.58 2.83 2.51 32.05 23.20 15.65 11.10 9.65 95.65 99.90 100.00 100.00 100.00
200 -7.45 -4.62 | -221 | -146 | -1.11 11.91 5.73 3.25 2.59 2.24 36.55 31.35 17.45 12.40 9.95 97.30 100.00 100.00 100.00 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations

generated according to (40)-(41) with as =0.6.The knowledge of lag orders is not used in the estimation stage and the integer part of Tll3 gives gives 3,3,4,5 and 5 for T=30,50,100,150 and 200, respectively
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Table 5: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (6 ) in the Case of ¢, =0.8 DGP is

ARDL(2,1) model with heterogeneous coefficients, ¢, = 0.8, stationary regressors, m = 2 factors, no feedback effectsand p, =0.

Bias ( x100 ) Root Mean Square Errors ( x100 ) Size (5% level, H0 :0=1) Power (5% level, Hl (0= 1.2)
(N,T) 30 | 50 | 100 [ 150 [ 200 30 [ 50 100 | 150 | 200 30 | 50 | 100 [ 150 [ 200 30 [ 50 [ 100 [ 150 200
— —|ruws —
CS-DL mean group ( py =0, Py = [T ] and P = Py -1
30 -5.95 -5.68 -2.87 -1.19 -1.86 21.83 14.77 10.87 9.28 8.23 7.70 8.65 7.45 5.75 6.90 28.35 51.30 63.45 66.20 79.25
50 -6.32 -5.87 -2.92 -1.59 -1.70 17.52 12.12 8.42 7.36 6.68 7.90 9.45 6.90 6.60 6.50 40.50 70.75 82.50 86.35 92.55
100 -6.47 -5.47 -3.03 -1.81 -1.67 13.09 9.40 6.46 5.24 4.83 9.35 12.35 8.85 5.85 7.70 65.10 91.90 98.25 98.95 99.70
150 -6.24 -5.60 -2.95 -1.65 -1.70 11.21 8.34 5.55 4.40 4.07 10.55 13.85 9.40 6.25 8.50 80.95 98.45 99.95 99.85 99.95
200 -6.32 -5.68 -3.08 -1.66 -1.68 10.26 7.94 5.05 4.00 3.55 12.30 18.90 10.70 8.05 8.10 90.40 99.65 100.00 100.00 100.00
— — |rus —
Cs-DL pooled ( Py = 0, p, =T ]and p=p,—1
30 -5.46 -5.46 -2.49 -1.12 -1.73 19.66 13.97 10.21 8.88 7.85 7.20 7.75 7.45 5.90 6.50 32.70 55.50 65.80 69.15 81.85
50 -5.54 -5.31 -2.80 -1.29 -1.52 15.73 11.23 8.01 7.04 6.45 8.00 8.75 6.45 6.35 6.70 44.60 73.95 84.45 87.80 93.65
100 -6.04 -5.03 -2.78 -1.64 -1.48 11.81 8.76 6.07 4.98 4.68 10.20 10.65 8.65 6.20 7.95 72.05 94.20 98.50 99.10 99.70
150 -5.61 -5.12 -2.63 -1.46 -1.54 10.06 7.77 5.20 4.19 3.86 9.95 13.25 10.20 6.90 7.70 86.00 98.80 99.95 99.85 99.95
200 -5.78 -5.05 -2.70 -1.47 -1.56 9.20 7.19 4.72 3.79 341 12.45 17.45 10.35 7.05 7.55 94.60 99.75 100.00 100.00 100.00
Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with p2 =T v ).
30 -12.89 -5.14 -2.82 -1.50 -1.28 786.15 19.34 9.43 7.65 6.69 10.85 11.55 8.90 7.35 7.60 35.00 55.00 74.90 82.50 90.00
50 -2.09 -8.46 -2.72 -1.69 -1.29 394.84 187.62 7.57 6.04 5.40 11.55 10.80 9.15 8.00 7.45 37.90 68.50 89.35 95.00 97.90
100 -30.77 -5.24 -2.87 -2.08 -1.45 768.23 19.56 5.70 4.55 4.04 11.50 14.75 10.10 9.15 9.00 44.10 85.50 98.85 99.75 100.00
150 -15.09 -4.79 -2.98 -1.96 -1.47 375.14 18.01 5.25 3.85 3.37 12.30 16.90 14.00 10.65 9.30 46.45 92.40 99.50 100.00 100.00
200 -1.15 -6.97 -3.07 -1.96 -1.47 229.52 69.18 4.68 3.59 2.98 12.30 22.20 15.75 12.30 9.85 49.15 95.30 100.00 100.00 100.00
Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with p2 = [T l/3]).
30 -26.96 | -3157 | -23.02 | -21.56 | -20.97 145.97 203.84 24.91 23.16 22.29 48.25 60.65 70.50 74.85 79.35 72.25 89.15 98.15 99.60 99.70
50 -25.05 | -27.49 | -23.46 | -21.76 | -21.08 424.65 29.74 24.99 22.68 21.90 57.20 76.25 87.55 91.00 94.00 77.80 96.45 99.70 100.00 100.00
100 -3541 | -27.96 | -2342 | -22.14 | -21.19 148.21 32.71 24.01 22.60 21.62 68.30 92.05 98.20 99.70 99.75 84.25 98.30 100.00 100.00 100.00
150 -96.09 | -27.09 | -23.65 | -22.06 | -21.17 2622.39 41.48 24.07 22.37 21.46 72.70 96.05 99.85 99.95 100.00 85.90 99.10 100.00 100.00 100.00
200 -3044 | -28.11 | -23.68 | -21.92 | -21.27 248.48 30.67 24.00 22.18 21.48 73.70 97.70 100.00 100.00 100.00 85.25 98.95 100.00 100.00 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations

generated according to (40)-(41) with as =0.6.The knowledge of lag orders is not used in the estimation stage and the integer part of Tll3 gives gives 3,3,4,5 and 5 for T=30,50,100,150 and 200, respectively
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Table 6: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (6 ) in the Case of ¢, =0.9 DGP is
ARDL(2,1) model with heterogeneous coefficients, ¢, = 0.9, stationary regressors, m = 2 factors, no feedback effectsand p, =0.

Bias ( XlOO) Root Mean Square Errors ( XlOO) Size (5% level, H0 :0=1) Power (5% level, Hl (0= 1.2)
(N,T) 30 | 50 [ 100 [ 150 [ 200 30 [ 50 [ 100 | 150 [ 200 30 | 50 100 | 150 [ 200 30 | 50 | 100 [ 150 200
— —|ruws —
CS-DL mean group ( p7 =0, Py = [T ] and P = Py -1
30 -12.05 | -11.37 -6.94 -4.56 -4.89 27.31 19.55 14.78 12.60 11.66 9.00 9.85 9.75 8.05 9.45 31.80 53.15 61.35 63.65 73.00
50 -11.64 | -10.52 -6.96 -4.69 -4.71 22.01 16.59 12.23 10.16 9.21 9.15 13.45 11.15 7.85 10.40 41.40 69.35 80.35 79.80 89.90
100 -12.19 | -10.74 -6.77 -4.77 -4.63 18.30 14.13 9.85 7.95 7.19 16.35 21.95 16.95 11.60 13.30 67.65 92.05 97.05 96.85 99.45
150 -11.60 | -10.76 -6.67 -4.79 -4.63 15.71 13.28 8.88 7.07 6.48 19.90 31.35 22.20 15.05 17.95 84.40 98.20 99.70 99.45 100.00
200 -11.87 | -10.66 -6.58 -4.88 -4.77 15.17 12.52 8.22 6.67 6.15 24.00 38.55 27.40 19.25 22.05 92.45 99.80 99.95 100.00 100.00
— —|Tus —
CS-DL pooled ( Py = 0, p, =T ]and p=p,—-1
30 -11.26 | -10.51 -6.36 -4.21 -4.53 24.79 18.53 14.13 12.10 11.24 9.00 10.00 9.75 8.25 9.35 34.00 55.35 63.80 65.80 74.20
50 -10.81 -9.80 -6.44 -4.41 -4.45 20.53 15.76 11.48 9.76 8.83 9.60 13.35 10.95 8.35 9.35 47.60 71.95 81.60 82.50 91.20
100 -11.12 -9.97 -6.24 -4.39 -4.29 16.72 13.31 9.26 7.47 6.85 15.10 20.80 15.20 11.10 13.00 73.60 92.65 97.50 97.55 99.20
150 -10.72 | -10.13 -6.22 -4.53 -4.33 14.51 12.54 8.31 6.71 6.13 19.60 30.10 20.00 14.40 17.05 88.05 98.60 99.65 99.70 99.85
200 -10.97 -9.94 -6.18 -4.53 -4.41 14.03 11.76 7.82 6.30 5.81 25.35 35.70 26.10 17.80 22.55 94.70 99.80 99.90 99.95 100.00
Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with [0, = T v ).
30 -21.58 -6.64 -3.38 -1.70 -1.36 438.72 121.05 12.25 9.96 8.51 11.25 11.05 8.35 8.00 7.25 29.00 46.80 61.95 69.25 76.05
50 4.94 -5.49 -3.31 -2.27 -1.61 922.24 34.12 9.95 7.80 6.81 10.25 10.70 8.70 7.55 7.60 32.30 57.05 75.60 85.50 90.60
100 8.35 -3.40 -3.87 -2.43 -1.82 770.17 112.28 7.72 5.92 5.01 10.95 13.90 11.85 9.55 8.00 35.55 71.20 94.40 97.10 99.25
150 -22.01 -7.03 -3.45 -2.61 -1.84 513.85 91.47 6.40 5.07 4.24 10.65 16.85 11.95 11.30 8.75 35.85 78.90 97.40 99.75 99.80
200 41.07 -4.61 -3.61 -2.70 -1.92 2063.94 127.98 5.90 4.57 3.80 12.45 17.90 14.55 12.30 10.25 38.60 82.55 99.35 100.00 100.00
Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with p2 =T s ).

30 21.99 | -27.42 | -22.99 | -20.75 | -20.04 1921.14 70.72 26.25 23.39 22.18 40.55 51.10 57.40 60.25 63.65 60.40 80.05 90.60 94.50 97.40
50 -40.53 | -25.17 | -23.32 | -21.48 | -20.71 238.17 219.25 25.35 22.96 21.99 46.45 61.40 71.85 78.45 82.15 65.90 87.55 96.65 98.90 99.65
100 -93.36 | -34.65 | -23.62 | -21.97 | -21.09 3030.40 242.83 27.18 22.76 21.72 54.20 75.05 92.25 93.50 97.30 72.30 91.90 99.55 99.80 100.00
150 -33.97 | -33.48 | -23.56 | -21.88 | -20.96 472.17 329.85 24.24 22.39 21.39 55.15 81.65 96.60 99.15 99.60 71.60 93.60 99.85 100.00 99.95
200 -37.78 | -14.74 | -23.75 | -22.07 | -21.10 247.78 701.23 24.30 22.42 2141 59.35 86.65 98.80 99.90 100.00 73.45 94.25 100.00 100.00 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations

generated according to (40)-(41) with as =0.6.The knowledge of lag orders is not used in the estimation stage and the integer part of Tll3 gives gives 3,3,4,5 and 5 for T=30,50,100,150 and 200, respectively
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Table 7: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (6 ) in the Case of m =3 Factors DGP is
ARDL(2,1) model with heterogeneous coefficients, ¢, = 0.6, stationary regressors, m =3 factors, no feedback effectsand p, =0.

Bias ( x100 ) Root Mean Square Errors ( XlOO) Size (5% level, H0 :0=1) Power (5% level, Hl (0= 1.2)
(N,T) 30 | 50 | 100 [ 150 [ 200 30 | 50 [ 100 | 150 | 200 30 [ 50 [ 100 [ 150 [ 200 30 | 50 | 100 [ 150 200
— —|ruws —

CS-DL mean group ( py =0, Py = [T ] and P = Py -1
30 -1.85 -1.02 0.00 -0.01 -0.02 17.23 11.03 8.20 7.45 6.63 6.70 6.15 6.90 5.75 6.40 29.80 51.70 68.05 78.05 85.25
50 -0.79 -0.63 -0.24 0.03 0.10 12.90 8.79 6.68 5.77 5.04 4.90 6.55 6.35 6.20 5.05 38.65 67.25 85.85 92.70 96.60
100 -1.00 -0.94 -0.23 0.09 -0.15 9.57 6.23 4.73 412 3.72 5.70 5.40 5.55 5.20 5.35 61.05 92.80 99.10 99.60 99.95
150 -1.19 -0.88 -0.02 0.00 -0.06 7.77 5.03 3.73 3.34 2.92 6.05 4.85 5.15 5.40 4.60 78.45 98.30 99.90 100.00 100.00
200 -0.99 -0.78 -0.03 -0.03 0.09 6.62 4.50 3.23 2.88 2.61 5.00 5.60 5.20 4.85 4.90 89.15 99.60 100.00 100.00 100.00

— — |rus —

Cs-DL pooled ( Py = 0, p, =T ]and p=p,—1
30 -1.59 -0.79 0.08 -0.04 0.01 15.07 10.40 7.96 7.15 6.57 7.05 6.40 7.05 5.95 6.45 34.10 54.25 72.20 80.00 86.40
50 -0.91 -0.57 -0.17 0.03 0.11 1151 8.27 6.44 5.57 4.93 5.65 6.50 6.55 5.50 5.00 47.50 71.95 88.25 93.90 97.65
100 -1.01 -0.88 -0.21 0.10 -0.16 8.33 5.78 451 3.97 3.58 5.55 5.85 5.50 5.35 5.20 72.30 94.90 99.55 99.85 100.00
150 -0.90 -0.72 -0.04 0.00 -0.07 6.78 4.73 3.61 3.28 2.88 6.20 5.15 5.70 5.35 4.80 87.25 99.10 100.00 100.00 100.00
200 -0.96 -0.63 -0.05 0.01 0.08 5.79 4.19 3.08 2.81 2.55 5.25 6.30 5.10 5.40 5.60 94.80 99.85 100.00 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with p2 = [T v ).
30 -5.34 -2.54 -0.89 -0.10 0.34 144.86 11.33 7.34 6.29 5.65 9.10 8.80 7.80 6.70 7.15 37.10 61.60 83.70 88.95 93.35
50 -5.60 -2.52 -1.03 -0.20 0.23 157.20 9.36 5.91 4.86 4.28 9.20 9.80 8.10 6.20 5.85 44.65 76.50 94.60 98.05 99.40
100 -0.04 -3.29 -1.21 -0.23 -0.07 83.58 10.20 4.28 3.43 3.10 9.65 11.05 7.85 6.65 6.25 56.30 95.20 100.00 100.00 100.00
150 -4.99 -2.93 -0.94 -0.44 0.01 94.15 7.97 3.48 2.82 2.54 11.80 13.50 8.20 4.80 5.40 64.25 98.65 99.95 100.00 100.00
200 7.81 1.08 -1.01 -0.36 0.08 383.41 178.92 3.08 2.51 2.23 12.10 15.05 8.15 6.75 6.55 67.70 99.60 100.00 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with p2 = [T v ).
30 -24.61 | -25.74 | -22.19 | -20.87 | -20.48 271.79 27.83 23.55 22.09 21.54 57.05 70.00 81.45 84.80 86.65 84.95 97.50 99.85 99.95 100.00
50 -2947 | -25.95 | -22.39 | -21.20 | -20.52 39.80 27.22 23.27 21.90 21.18 70.30 88.00 94.45 97.15 98.05 91.90 99.65 100.00 100.00 100.00
100 -30.85 | -26.44 | -22.73 | -21.26 | -20.94 37.04 27.17 23.16 21.63 21.28 85.75 98.60 100.00 99.95 100.00 96.20 99.95 100.00 100.00 100.00
150 -31.83 | -26.42 | -22.46 | -21.61 | -20.86 48.65 26.97 22.76 21.85 21.08 89.95 99.95 99.95 100.00 100.00 96.05 99.95 100.00 100.00 100.00
200 -29.13 | -26.22 | -22.55 | -21.46 | -20.80 108.14 26.59 22.77 21.66 20.97 91.85 99.85 100.00 100.00 100.00 96.20 100.00 100.00 100.00 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic

innovations generated according to (40)-(41) with as =0.6. The knowledge of lag orders is not used in the estimation stage and the integer part of Tll3 gives gives 3,3,4,5 and 5 for T=30,50,100,150 and 200,
respectively
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Table 8: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (0 ) in the Case of Unit Roots in Factors
DGP is ARDL(2,1) model with heterogeneous coefficients, ¢, = 0.6, unit roots in factors, m = 2 factors, no feedback effects and p, =0.

Bias ( x100 ) Root Mean Square Errors ( x100 ) Size (5% level, H0 :0=1) Power (5% level, Hl (0= 1.2)
(N,T) 30 [ 50 100 | 150 | 200 30 50 100 [ 150 | 200 30 [ 50 100 150 | 200 30 | 50 | 100 [ 150 200
— —|ruws —

CS-DL mean group ( py =0, Py = [T ] and P = Py -1
30 -1.04 -1.04 -0.14 0.06 0.05 16.26 11.33 8.28 7.27 6.55 5.65 6.85 6.60 5.95 6.55 28.50 53.25 71.45 78.30 86.40
50 -0.84 -0.84 -0.30 0.20 -0.16 12.76 8.51 6.56 5.79 5.18 5.15 4.85 5.35 6.40 5.70 38.25 70.50 87.65 92.80 97.10
100 -1.42 -0.99 -0.04 0.03 -0.14 9.37 6.29 4.55 4.05 3.62 5.30 5.50 5.10 5.55 5.40 63.55 92.60 98.75 99.80 100.00
150 -1.15 -0.91 -0.14 -0.08 0.01 7.87 5.26 3.73 3.31 291 5.90 6.40 4.75 4.95 4.90 78.30 98.10 99.95 100.00 100.00
200 -1.14 -0.79 -0.21 -0.03 0.03 6.79 443 3.24 2.90 2.50 5.50 4.95 5.20 5.10 4.95 88.00 99.65 100.00 100.00 100.00

— — |rus —

Cs-DL pooled ( Py = 0, p, =T ]and p=p,—1
30 -0.69 -0.78 -0.15 0.09 0.04 14.53 10.66 8.01 7.04 6.47 6.25 6.75 6.80 6.15 7.20 33.10 57.20 72.95 80.50 88.00
50 -0.69 -0.81 -0.27 0.19 -0.24 11.42 7.97 6.17 5.62 5.06 5.05 5.25 5.80 6.40 5.60 45.45 74.10 90.60 94.15 97.55
100 -1.17 -0.80 -0.05 0.02 -0.09 8.25 5.77 4.38 4.03 3.60 5.40 5.55 5.80 5.65 5.60 72.60 95.00 99.50 99.90 100.00
150 -0.94 -0.82 -0.14 -0.05 0.03 6.98 4.88 3.55 3.20 2.85 6.05 5.90 5.70 5.15 5.40 86.00 98.90 100.00 100.00 100.00
200 -0.98 -0.70 -0.20 -0.01 0.01 5.96 4.15 3.16 2.83 2.48 5.60 5.45 5.60 5.40 5.20 94.05 99.90 100.00 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with [0, = T v ).
30 14.28 -3.42 -1.78 -0.89 -0.48 760.36 14.43 7.34 6.04 5.47 9.40 10.10 8.35 6.75 7.20 38.75 66.45 88.85 93.30 96.40
50 -3.16 -3.92 -2.23 -1.19 -0.94 106.12 9.21 6.14 4.87 4.52 11.35 10.70 10.25 7.65 8.40 49.10 83.25 96.90 99.25 99.55
100 -9.23 -5.09 -2.62 -1.63 -1.20 293.70 7.95 4.67 3.75 3.31 15.00 18.15 12.30 9.90 8.40 65.15 97.95 100.00 100.00 100.00
150 -12.59 -5.44 -2.95 -1.97 -1.39 395.28 7.37 4.33 3.35 2.78 18.40 25.50 18.25 13.50 8.80 73.35 99.55 100.00 100.00 100.00
200 -5.66 -5.90 -3.07 -2.04 -1.47 91.39 7.55 4.15 3.13 2.56 21.95 34.35 22.30 16.80 11.60 77.50 99.90 100.00 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with p2 =T v ).
30 -28.65 | -26.01 | -22.78 | -21.75 | -21.38 43.69 28.01 24.09 22.81 22.34 54.90 72.60 84.75 89.45 91.55 84.60 97.80 99.90 100.00 100.00
50 -30.99 | -26.05 | -23.52 | -21.99 | -21.78 80.99 27.34 24.34 22.65 22.38 67.60 87.65 96.40 98.10 99.00 89.65 99.60 100.00 100.00 100.00
100 -32.82 | -27.17 | -23.82 | -22.65 | -21.99 69.50 27.81 24.20 22.98 22.28 86.30 99.45 100.00 100.00 100.00 95.80 99.95 100.00 100.00 100.00
150 -26.37 | -27.61 | -24.12 | -22.92 | -22.31 175.08 28.01 24.37 23.13 22.50 92.10 99.95 100.00 100.00 100.00 96.95 100.00 100.00 100.00 100.00
200 -32.57 | -27.95 | -24.27 | -22.94 | -22.32 41.83 28.25 24.46 23.11 22.46 93.85 100.00 100.00 100.00 100.00 96.45 100.00 100.00 100.00 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations

generated according to (40)-(41) with as =0.6.The knowledge of lag orders is not used in the estimation stage and the integer part of Tll3 gives gives 3,3,4,5 and 5 for T=30,50,100,150 and 200, respectively
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Table 9: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (0 ) in the Case of Unit Roots in
Regressor Specific Components DGP is ARDL(2,1) model with heterogeneous coefficients, ¢, = 0.6, unit roots in v,,, m =2 factors, no

feedback effectsand p, =0.

Bias (x100) Root Mean Square Errors (x100) size (5% level, H, 1 0 = 1) Power (5% level, H, 1 0 =1.2)
(N,T) 30 | 50 | 100 [ 150 [ 200 30 | 50 100 | 150 [ 200 30 | 50 [ 100 | 150 | 200 30 | 50 | 100 [ 150 200
— — T3 _

CS-DL mean group ( Py = 0, py = [T ] and p=p,—1)
30 -2.99 0.37 0.25 0.33 -0.13 65.72 32.60 15.74 10.52 8.06 5.70 5.00 5.45 5.70 5.65 7.85 11.45 29.45 52.30 72.85
50 -0.20 0.66 -0.40 0.24 0.20 51.19 26.47 12.29 8.26 6.42 5.45 6.40 6.00 5.25 5.30 8.30 14.55 42.20 69.35 87.30
100 -0.76 -0.50 -0.09 0.11 0.09 37.01 18.87 9.00 5.88 4.44 4.70 5.65 6.00 5.00 4.45 9.40 22.00 64.90 91.60 99.05
150 -0.85 -0.17 -0.25 -0.06 0.08 30.36 15.18 7.17 4.76 3.72 4.55 5.35 5.80 4.90 5.45 10.75 27.15 81.85 98.60 99.90
200 0.15 -0.14 | -0.18 -0.17 0.18 27.24 13.26 6.28 4.21 3.15 5.90 5.55 5.40 6.00 5.00 12.25 34.05 89.65 99.60 100.00

— — |3 _

CS-DL pooled ( p7 =0, Py = T ]and P=pPs -1
30 -1.75 0.62 -0.04 -0.01 -0.06 47.00 24.71 12.38 9.06 7.13 5.20 5.60 6.50 7.40 6.70 8.95 14.60 40.85 64.45 78.95
50 -0.67 0.37 0.00 -0.01 0.02 36.30 19.19 9.39 6.88 5.64 4.95 5.40 5.70 6.45 6.30 10.40 20.25 57.30 82.95 93.15
100 -0.92 -0.95 -0.24 -0.01 -0.01 27.06 13.97 6.90 4.75 4.01 6.15 5.90 5.85 4.95 5.10 14.50 35.45 84.50 98.25 99.50
150 -1.09 -0.34 | -0.08 -0.13 0.13 21.26 11.24 5.47 3.98 331 4.70 5.55 4.75 5.45 4.85 16.95 46.00 95.00 99.75 100.00
200 -0.05 -0.11 -0.03 -0.10 0.07 18.94 9.81 4.74 3.45 2.76 4.95 5.45 5.00 5.05 5.20 20.10 55.20 98.25 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with P, = [T 1/3]).
30 11.59 -2.76 -0.64 -0.09 -0.27 1487.96 52.46 15.63 10.51 8.10 5.00 5.80 5.60 5.70 6.00 7.30 12.85 31.35 55.35 73.00
50 -28.86 -0.82 -0.92 -0.12 -0.02 1128.77 27.42 12.19 8.26 6.34 4.60 6.10 6.70 5.80 5.60 7.95 14.95 44.25 70.55 88.30
100 -6.61 -1.86 -0.68 -0.24 -0.12 361.66 19.50 9.00 5.77 4.47 4.70 5.10 6.35 5.25 5.80 8.75 22.25 67.60 93.20 99.20
150 -61.57 -1.90 -0.82 -0.28 -0.11 2620.58 16.18 7.17 4.67 3.67 4.05 5.40 5.50 4.95 5.80 10.05 30.85 83.80 99.00 99.95
200 2.04 -1.54 | -0.68 -0.41 0.00 336.21 14.05 6.24 4.21 3.12 5.05 5.25 5.45 5.55 4.90 11.10 36.55 91.45 99.70 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with P, = [T 1/3]).
30 -14.85 -9.27 -4.73 -2.76 -2.30 146.76 36.98 17.15 11.44 8.94 6.65 6.45 6.85 7.05 7.30 12.20 17.30 38.80 58.70 76.15
50 -18.57 -8.15 -4.38 -2.42 -1.79 136.51 28.29 13.16 8.92 6.79 6.80 7.15 7.35 6.70 6.15 12.90 22.80 53.80 76.50 91.50
100 -16.57 -8.00 -3.42 -2.03 -1.39 72.70 20.94 9.73 6.19 4.75 6.60 7.90 7.75 6.75 7.15 16.30 33.75 76.10 95.75 99.40
150 -12.87 -7.13 -3.19 -1.80 -1.24 85.37 17.40 7.87 5.12 391 8.00 7.75 7.90 6.95 7.00 19.85 43.15 89.60 99.30 100.00
200 -16.82 -6.73 -2.89 -1.82 -1.04 346.63 15.13 6.99 4.62 3.33 8.45 7.75 8.35 7.75 6.15 23.20 51.75 95.40 99.90 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations

generated according to (40)-(41) with a, = 0.6. The knowledge of lag orders is not used in the estimation stage and the integer part of Tl/3 gives gives 3,3,4,5 and 5 for T=30,50,100,150 and 200, respectively
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Table 10: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (8 ) in the Case of Serially Correlated
Idiosyncratic Errors DGP is ARDL(2,1) model with heterogeneous coefficients, ¢, = 0.6, stationary regressors, m =2 factors, no

feedback effects and p, : 11DU(0,0.8).

Bias (x100) Root Mean Square Errors ( x100) size (5% level, H, : 0 = 1) Pover (5% level, H, : 6 =1.2)
(N,T) 30 | 50 | 100 | 150 [ 200 30 [ 50 [ 100 [ 150 [ 200 30 | 50 | 100 | 150 [ 200 30 | 50 [ 100 | 150 200
— — 1/3 —

CS-DL mean group ( Py = 0, Py = [T ] and p=p,—1)
30 -111 [ -0.45 | -021 [ 001 [ 012 21.91 14.75 1144 | 1033 [ 889 [ 7.05 | 600 | 540 | 625 | 555 | 2020 | 31.40 | 47.00 | 53.70 64.15
50 029 | -104 | 008 | 015 | -0.04 16.85 1171 888 | 789 | 696 | 525 | 620 | 595 | 500 | 595 | 2405 | 46.65 | 64.10 | 71.85 82.20
100 -122 | 075 | -011 | 003 | 0.08 12.21 8.14 604 | 555 | 497 | 480 | 505 | 485 | 445 | 590 | 4390 | 7235 | 90.05 | 9450 97.70
150 -121 | -1.04 | -007 | 009 | -0.03 10.05 6.90 522 | 465 | 416 | 505 | 540 | 555 | 535 | 6.65 | 5800 | 86.40 | 96.80 | 99.15 99.70
200 -128 | -0.80 | 005 | 001 | -0.08 8.62 5.89 456 | 399 | 345 | 540 | 525 | 625 | 545 | 415 | 7000 | 9445 | 99.05 | 99.95 | 100.00

— — 1/3 —

CS-DL pooled ( p7 =0, Py = [T ] and P = Py -1
30 086 | -0.35 | -0.06 | 012 | 022 20.29 14.11 1103 | 1001 | 871 | 68 | 630 | 625 | 620 | 630 | 2405 | 3380 | 49.75 | 58.05 67.25
50 035 | -097 | 010 | 011 | -0.05 15.46 11.22 851 | 757 | 673 | 570 | 595 | 510 | 560 | 555 | 2865 | 5000 | 67.10 | 75.40 83.80
100 -111 | -057 | -011 | 008 | 0.15 11.05 7.75 589 | 528 | 475 | 530 | 450 | 465 | 500 | 455 | 4965 | 7505 | 9110 | 95.30 98.35
150 -100 | -0.77 | -0.07 | 002 | -0.05 9.06 6.50 502 | 443 | 401 | 520 | 545 | 555 | 490 | 6.00 | 66.10 | 90.00 | 97.60 | 99.45 99.75
200 -101 | -052 | 000 | 004 [ -0.05 7.93 5.59 435 | 382 | 336 | 595 | 530 | 570 | 460 | 475 | 76.15 | 9540 | 99.60 | 100.00 | 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with P, = [T v

—

30 - 22.36 | 16.11 | 16.50 17.10 1331.93 276.49 20.13 19.44 | 19.45 6.85 14.05 | 31.85 | 40.85 | 50.60 9.65 10.65 11.80 11.75 11.80
15.73
50 -1.80 13.61 | 16.51 | 16.65 17.00 568.06 81.68 19.19 18.46 | 18.44 7.50 20.60 | 46.55 | 61.45 | 71.70 8.95 11.60 11.20 12.80 11.60

100 43.49 16.66 15.91 16.56 17.04 1184.81 34.38 17.18 17.47 17.81 10.55 36.15 72.45 88.25 94.65 7.80 10.90 12.10 12.80 14.00
150 21.78 16.67 | 16.16 | 16.54 16.87 382.97 38.39 17.12 17.17 | 1740 1105 | 47.10 | 88.60 | 96.60 | 99.05 7.10 14.00 16.20 15.60 15.90
200 15.42 - 16.23 | 16.65 16.86 323.97 4968.11 16.94 | 17.14 | 17.26 1340 | 57.50 | 9535 | 99.35 | 99.90 5.85 13.25 17.45 17.80 17.90

93.00
Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with p2 =T v ).

30 16.40 -6.69 16.36 | 17.54 18.91 697.94 880.16 23.81 | 22.65 | 23.23 6.75 7.70 17.15 | 24.65 | 30.80 17.05 15.95 12.15 10.70 9.60
50 -20.75 | 12.88 | 15.81 | 17.78 18.31 2302.74 61.28 23.24 | 20.87 | 21.06 4.45 9.05 23.80 | 38.50 | 44.45 15.95 16.20 11.95 8.50 8.80
100 48.11 12.90 15.75 18.12 18.87 1567.80 164.94 41.04 22.77 20.28 5.10 11.70 46.05 66.15 75.90 17.95 17.55 11.35 8.55 6.65
150 26.90 1279 | 16.79 | 17.82 18.81 1050.80 491.93 18.79 18.97 | 19.79 3.85 16.40 | 63.75 | 83.05 | 91.10 15.30 18.55 11.85 8.90 8.05
200 0.27 | -25.36 | 16.89 | 16.07 18.58 354.88 1004.96 10.27 | 84.64 | 19.27 3.65 2055 | 79.10 | 92.90 | 96.70 16.75 17.85 11.20 9.20 7.35

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations

generated according to (40)-(41) with d, = 0.6. The knowledge of lag orders is not used in the estimation stage and the integer part of Tll3 gives gives 3,3,4,5 and 5 for T=30,50,100,150 and 200, respectively

43



Table 11: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (6 ) in the Case of Breaks in Errors
DGP is ARDL(2,1) model with heterogeneous coefficients, ¢, = 0.6, stationary regressors, m =2 factors, no feedback effects and breaks

in errors.
Bias (x100) Root Mean Square Errors (X 100) size (5% level, H, 1 0 =1) Power (5% level, H, 1 0 =1.2)
(N,T) 30 [ 50 [ 100 [ 150 [ 200 30 | 50 [ 100 [ 150 | 200 30 [ 50 [ 100 | 150 [ 200 30 [ 50 | 100 [ 150 200
— —|Tus —

Cs-DL meangroup ( Py = 0, p, = [T and P=p,—1)
30 -1.72 -1.26 0.09 0.11 0.25 18.91 12.45 9.88 9.03 7.86 7.20 6.45 6.60 6.05 6.15 25.55 44.75 59.60 64.90 72.45
50 -0.83 -0.82 -0.08 0.09 0.05 14.33 10.13 7.55 6.75 6.27 4.90 6.25 5.75 4.80 5.85 33.70 58.60 78.05 83.05 87.85
100 -1.00 -0.91 -0.08 0.10 -0.06 10.50 7.00 5.23 5.00 4.37 5.30 5.15 4.75 5.70 4.95 54.90 85.70 95.85 96.95 99.20
150 -0.88 -0.90 -0.10 0.05 -0.05 8.57 5.62 443 4.01 3.63 6.00 5.35 6.05 4.50 4.75 71.40 95.80 99.25 99.70 100.00
200 -0.63 -0.85 -0.29 0.00 -0.01 747 4.92 3.72 3.36 3.12 5.50 5.00 4.90 4.55 4.70 80.85 98.15 100.00 100.00 100.00

— —|ruws _

CS-DL pooled ( p7 =0, Py = [T ] and P = Py -1
30 -1.57 -1.05 0.01 0.15 0.10 16.82 12.04 9.49 8.78 7.74 7.10 7.10 6.60 6.70 6.80 30.20 48.15 61.50 66.10 74.70
50 -1.13 -0.72 -0.04 0.10 0.06 12.71 9.34 7.25 6.48 6.09 4.80 6.20 5.70 5.05 5.75 41.60 63.65 80.55 84.65 89.50
100 -0.90 -0.78 -0.15 0.03 -0.02 9.11 6.53 5.03 4.80 4.27 5.55 5.45 4.80 5.65 5.50 63.95 89.15 96.85 98.20 99.55
150 -0.83 -0.79 -0.03 0.09 -0.03 7.40 5.37 4.23 3.86 3.52 5.45 5.75 5.55 4.70 4.75 81.20 96.60 99.40 99.85 99.95
200 -0.65 -0.78 -0.27 -0.01 -0.05 6.61 471 3.59 3.25 3.01 5.20 4.75 4.90 4.50 4.60 87.80 99.35 99.95 100.00 100.00

Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with p2 = [T 1/3]).
30 6.24 6.67 9.59 11.95 14.00 143.70 16.06 14.00 14.80 16.05 5.15 7.90 20.45 33.40 47.30 19.30 28.25 32.35 24.85 19.80
50 10.20 7.71 9.03 11.55 13.95 111.76 19.37 11.73 13.27 15.25 5.70 11.20 24.55 46.10 68.65 21.30 33.45 41.95 32.90 22.50
100 30.94 7.07 9.19 11.58 13.88 514.17 26.38 10.71 12.48 14.59 6.45 13.35 44.50 75.60 91.90 24.45 50.40 57.90 48.75 35.30
150 24.76 7.07 8.80 11.62 13.67 876.89 15.90 9.83 12.24 14.13 7.50 18.80 58.30 89.95 98.20 25.80 57.75 74.45 62.40 47.05
200 1.98 6.22 8.85 11.51 13.76 403.92 28.52 9.58 11.97 14.12 7.80 22.55 70.15 96.35 99.70 28.30 66.50 84.55 73.25 54.60

Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with p2 = [T 1/3]).
30 -28.03 -10.64 | -5.13 -1.40 2.17 411,57 21.22 12.54 10.55 10.34 25.20 21.75 13.05 8.55 6.90 54.20 64.00 67.10 60.45 52.10
50 -15.90 -9.72 -5.33 -1.90 2.08 78.66 20.38 11.70 8.89 8.24 28.55 23.30 14.90 9.95 6.65 59.20 75.90 82.00 76.55 65.05
100 -30.60 -11.17 -5.39 -1.63 2.16 353.77 28.48 9.12 5.93 6.09 34.05 33.95 20.45 8.00 6.95 69.50 89.50 95.20 94.20 86.30
150 -15.01 381.68 | -5.79 -1.55 2.13 497.45 17476 7.85 5.01 5.18 38.45 41.60 26.80 8.50 7.75 74.20 93.75 98.75 97.80 94.45
200 -14.40 -11.21 -5.69 -1.72 2.24 123.28 26.47 7.33 4.61 4.59 41.95 49.25 30.75 9.95 8.20 76.90 95.45 99.60 99.55 98.75

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations

generated according to (40)-(41) with d, = 0.6.The knowledge of lag orders is not used in the estimation stage and the integer part of T s gives gives 3,3,4,5 and 5 for T=30,50,100,150 and 200, respectively.
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Table 12: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient (9 ) in the Case of Feedback Effects
DGP is ARDL(2,1) model with heterogeneous coefficients, ¢, = 0.6, stationary regressors, m =2 factors, Ky IIDU(0,0.Z), and p,=0.

Bias (x100) Root Mean Square Errors (x100) size (5% level, H, 1 0 = 1) Power (5% level, H, 1 6 =1.2)
(N,T) 30 | 50 | 100 [ 150 [ 200 30 | 50 | 100 [ 150 [ 200 30 [ 50 [ 100 [ 150 [ 200 30 | 50 | 100 [ 150 200
— — |y —
CS-DL mean group ( Py = 0, p, = [T ] and P=p, -1
30 -1.51 2.38 5.10 5.74 5.84 16.20 10.51 9.35 9.16 8.54 6.00 6.60 12.50 15.70 18.20 32.55 43.95 53.10 57.00 65.75
50 -1.45 2.38 5.11 5.48 6.06 12.54 8.54 7.91 7.68 7.79 6.50 8.10 14.45 19.00 25.55 45.25 62.35 70.55 77.40 81.15
100 -0.97 2.85 5.16 5.61 6.05 8.88 6.34 6.70 6.85 6.93 5.80 7.90 23.30 31.85 43.05 69.00 85.35 92.80 95.60 97.85
150 -1.23 2.64 5.05 5.68 6.15 7.50 5.41 6.12 6.45 6.76 5.80 8.70 30.90 46.05 59.55 84.60 95.60 98.90 99.50 99.90
200 -1.46 2.55 491 5.61 6.03 6.57 4.72 5.75 6.26 6.50 6.30 9.90 37.55 55.20 71.25 92.90 98.75 99.90 99.95 100.00
— — |3 _
CS-DL pooled ( Py = 0, Py = [T ] and p=p,—1)
30 2.28 4.73 6.80 7.10 7.00 14.57 10.87 10.37 10.04 9.43 7.25 8.90 17.20 19.90 21.25 30.75 40.75 45.90 50.95 57.55
50 2.26 4.83 6.77 6.89 7.40 11.41 9.10 8.96 8.75 8.94 6.55 10.70 21.25 26.60 33.25 41.50 54.60 61.40 69.95 72.05
100 2.96 5.30 6.89 7.10 742 8.53 7.65 8.07 8.11 8.17 7.20 16.60 37.05 47.05 58.10 61.00 75.60 85.40 89.95 92.90
150 2.70 5.07 6.72 7.20 7.50 7.21 6.83 7.55 7.84 8.03 8.05 20.65 50.65 63.80 75.60 76.60 90.55 95.50 97.85 98.55
200 2.47 5.10 6.68 7.15 7.36 6.21 6.40 7.30 7.68 7.78 7.60 25.45 62.00 75.80 85.45 87.80 95.70 99.05 99.50 99.80
Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with P, = [T 1/3]).
30 -49.31 -6.64 -2.84 -1.50 -1.23 1613.71 11.90 7.13 6.12 5.29 17.15 14.35 8.40 8.70 7.50 54.75 80.05 93.55 95.05 97.95
50 15.94 -7.02 -3.05 -2.03 -1.28 1208.10 10.96 6.01 4.85 4.27 19.45 19.25 11.10 8.95 7.75 65.05 93.30 99.15 99.90 99.70
100 -17.83 -6.54 -3.06 -2.00 -1.50 120.30 9.22 4.83 3.81 3.25 26.80 26.90 15.40 12.55 10.15 78.50 99.35 100.00 100.00 100.00
150 -14.20 -6.84 -3.24 -2.06 -1.45 127.42 8.28 4.40 3.27 2.74 32.55 35.75 21.15 13.70 9.90 82.20 99.90 100.00 100.00 100.00
200 -17.89 -7.08 -3.39 -2.15 -1.57 283.24 8.22 4.28 3.15 2.56 37.60 47.30 27.80 19.30 12.55 83.90 99.85 100.00 100.00 100.00
Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with p2 = [T l/3]).

30 -3731 | -29.77 | -24.72 | -23.08 | -22.33 236.77 31.59 25.86 24.09 23.27 74.60 86.65 91.90 93.30 94.25 93.00 99.70 100.00 100.00 100.00
50 -3945 | -29.96 | -25.01 | -23.50 | -22.67 100.20 30.98 25.63 24.07 23.19 88.15 97.15 99.00 99.55 99.80 96.60 100.00 100.00 100.00 100.00
100 -38.09 | -30.16 | -25.06 | -23.56 | -22.75 60.47 30.71 25.39 23.86 23.02 94.90 99.80 100.00 100.00 100.00 97.70 99.95 100.00 100.00 100.00
150 -37.23 | -30.28 | -25.21 | -23.61 | -22.85 52.96 30.76 25.43 23.80 23.03 95.80 99.85 100.00 100.00 100.00 97.80 99.90 100.00 100.00 100.00
200 -39.43 | -30.46 | -25.40 | -23.73 | -22.89 54.51 30.72 25.56 23.88 23.03 95.80 99.90 100.00 100.00 100.00 97.85 99.95 100.00 100.00 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations

generated according to (40)-(41) with d, = 0.6.The knowledge of lag orders is not used in the estimation stage and the integer part of Tl/3 gives 3,3,4,5 and 5 for T=30,50,100,150 and 200, respectively.
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Table 13: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of ¢, = E((oil) DGP is ARDL(1,0) model with
homogeneous long-run, heterogeneous short-run, ¢, = 0.6, stationary regressors, m =2 factors, no feedback effects and p, =0.

Bias (x100) Root Mean Square Errors (X 100) size (5% level, H, 1 ¢, = 0.3) Power (5% level, H, 1 ¢, = 0.4)
(N,T) 30 | 50 | 100 [ 150 [ 200 30 | 50 | 100 [ 150 [ 200 30 [ 50 [ 100 [ 150 | 200 30 | 50 [ 100 [ 150 200
Imposing CS-DL pooled estimate of long-run coefficient
30 -8.38 -435 | -1.90 | -1.01 | -0.86 10.26 6.22 4.18 3.68 3.64 51.45 27.60 12.50 9.10 9.35 96.25 95.00 93.45 90.70 90.80
50 -8.89 -4.78 | -2.13 | -1.36 | -0.98 10.00 5.88 3.55 3.13 2.86 70.70 42.25 16.15 12.35 9.25 99.50 99.70 99.60 98.85 99.10
100 -9.27 -4.92 | -230 | -149 | -1.15 9.85 5.51 3.10 244 2.24 91.55 64.60 24.90 15.75 11.70 100.00 100.00 100.00 100.00 100.00
150 -9.36 -5.10 | -240 | -148 | -1.16 9.79 5.48 2.92 2.18 1.97 98.15 82.40 36.15 19.75 14.55 100.00 100.00 100.00 100.00 100.00
200 -9.37 -5.09 | -2.36 | -1.55 | -1.10 9.72 5.40 2.76 2.08 1.74 99.15 89.95 45.75 24.10 16.00 100.00 100.00 100.00 100.00 100.00
Infeasible estimator: Imposing knowledge of long run coefficients
30 -7.95 -4.01 | -1.77 | -094 | -0.78 9.48 5.73 4.00 3.53 3.53 48.40 23.30 11.55 8.25 8.50 97.25 95.85 93.10 91.65 91.15
50 -8.42 -441 | -1.98 | -1.29 | -0.88 9.31 5.43 3.38 3.01 2.77 70.60 36.55 14.45 11.00 8.00 99.80 99.85 99.65 98.90 99.20
100 -8.73 -450 | -2.13 | -144 | -1.07 9.21 5.05 291 2.36 2.15 93.00 60.65 22.30 14.25 10.85 100.00 100.00 100.00 100.00 100.00
150 -8.77 -4.67 | -221 | -141 | -1.08 9.13 5.03 2.71 2.10 1.88 98.20 77.70 31.50 18.25 13.00 100.00 100.00 100.00 100.00 100.00
200 -8.83 -4.67 | -2.18 | -148 | -1.01 9.12 4.95 2.57 2.00 1.65 99.30 86.65 38.80 22.30 14.10 100.00 100.00 100.00 100.00 100.00
Unconstrained CS-ARDL approach

30 -12.76 -6.34 | -278 | -158 | -1.20 13.99 7.73 4.63 3.83 3.70 74.60 42.30 16.65 10.75 10.50 99.30 98.15 95.80 93.50 92.40
50 -13.34 | -6.79 | -3.04 | -196 | -1.37 14.11 7.59 4.14 3.40 3.01 92.00 63.95 24.05 14.95 10.55 99.95 99.95 99.80 99.30 99.60
100 -13.71 -6.96 | -3.22 | -213 | -157 14.12 7.38 3.82 2.87 2.47 99.45 88.25 40.65 23.45 15.25 100.00 100.00 100.00 100.00 100.00
150 -13.77 -7.14 | -3.30 | -2.09 | -1.59 14.10 741 3.68 2.63 2.23 99.85 96.95 57.80 30.35 21.40 100.00 100.00 100.00 100.00 100.00
200 -13.83 -7.13 | -3.27 | -217 | -152 14.10 7.35 3.56 2.56 2.02 100.00 99.55 67.90 40.00 23.70 100.00 100.00 100.00 100.00 100.00

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic

innovations generated according to (40)-(41) with a, = 0.6.

Table 14: List of the 40 Countries in the Sample

Europe MENA Countries Asia Pacific Latin America
Austria Egypt Australia Argentina
Belgium Iran China Brazil
Finland Morocco India Chile
France Syria Indonesia Ecuador
Germany Tunisia Japan Peru
Italy Turkey Korea Venezuela
Netherlands Malaysia

Norway North America New Zealand Rest of Africa
Spain Canada Philippines Nigeria
Sweden Mexico Singapore South Africa
Switzerland United States Thailand

United Kingdom
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Table 15: Fixed Effects (FE) Estimates of the Long-Run Effects Based on the ARDL Approach, 1966-2010

ARDL (1 lag) ARDL (2 lags) ARDL (3 lags)
@ (b) © @ (b) (© @ (b) ©
[ stk seskok seksk seoksk seskeok seskok
Ou -0.075 -0.069 -0.061 -0.054 -0.055 -0.044
(0.009) (0.008) (0.010) (0.009) (0.016) (0.013)
[ stk stk ek ek stk stk
0. -0.025 -0.025 -0.025 -0.026 -0.025 -0.024
(0.007) (0.004) (0.007) (0.006) (0.008) (0.006)
etk sk stk ek ek ek ek stk stk
/% -0.854 -0.790 -0.876 -0.839 -0.771 -0.861 -0.768 -0.723 -0.771
(0.052) (0.064) (0.051) (0.045) (0.051) (0.048) (0.045) (0.039) (0.049)
CD test statistics 24.52 34.72 26.35 23.20 34.90 24.96 21.85 32.68 23.31
N xT 1642 1725 1642 1602 1685 1602 1562 1645 1562

P P o '
Notes: The ARDL specification is given by: Ayit =G+ Z/:]_q)i/Ayivt—/ + Zf:o'}ifxi,t—f + U;; . where Y,; is the log of real GDP, X;; = (Adn,ﬂ'n) , dit is the log of debt to GDP ratio, 7;; isthe

. . — — p — 1-1\"P . - . . . .
inflation rate, and P = 1,2, and 3. j’i =1- Z/_l(oi/, and ﬁi = ﬂfl Z/—oﬂif . The reported standard errors are robust to cross-sectional heteroskedasticity and residual serial correlation as in Arellano1987.

Symbols ***, ** and * denote significance at 1%, 5%, and at 10% respectively.

Table 16: Mean Group (MG) Estimates of the Long-Run Effects Based on the ARDL Approach, 1966-2010

ARDL (1 lag) ARDL (2 lags) ARDL (3 lags)
@) (b) © @ (b) (©) @ (b) ©
l:l sokok —_— sokok seokok —_— seokok sokok —_— sokok
8. -0.070 -0.070 -0.061 -0.076 -0.066 -0.083
(0.015) (0.012) (0.014) (0.013) (0.016) (0.014)
— — 0.021 - 0.040
3 0104 -0.038" -0.054"" 0,001
(0.021) (0.023) (0.024) (0.030) (0.032) (0.040)
sokok sokok sokok seokok sokok seokok sokok sokok sokok
g 0.791 0.764 -0.811 -0.836 -0.742 -0.809 -0.769 -0.687 -0.761
(0.028) (0.037) (0.030) (0.039) (0.044) (0.047) (0.043) (0.041) (0.053)
CD test statistics 19.15 33.62 21.39 16.99 3L.21 16.63 16.42 30.39 15.98
NxT 1642 1725 1642 1602 1685 1602 1562 1645 1562

Notes: The ARDL specification is given by: Ayn =c + z;p—fpiéAyi T zépioﬁ”xi e T U where yit is the log of real GDP, Xy = (Adnl”n) , dit is the log of debt to GDP ratio, 7T}, is the inflation rate, and

p=12, and 3. A= 1_2;:1%” and 9, = ﬂ{lZZOﬁN . Symbols ***, ** and * denote significance at 1%, 5%, and at 10% respectively.
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Table 17: Mean Group Estimates of the Long-Run Effects Based on the Cross-Sectionally Augmented ARDL (CS-ARDL) Approach,

1966-2010
CS-ARDL (1 lag) CS-ARDL (2 lags) CS-ARDL (3 lags)
(@ (b) (©) (@ (b) (©) (@ (b) (©)
skeokok — skeokok skokok — skokok skokok — skokok
g -0.087 -0.087 -0.090 0.079 -0.096 -0.120
Al
(0.013) (0.016) (0.013) (0.022) (0.016) (0.040)
% - 0.083™" -0.164™ - 0.071™ 01107 - -0.085 -0.080
(0.034) (0.038) (0.031) (0.035) (0.041) (0.059)
sk sk sk sk sk sk sk sk sk
/Dl -0.889 -0.790 -0.952 -0.967 -0.817 1,058 0.920 0.792 -1.210
(0.031) (0.041) (0.039) (0.042) (0.053) (0.053) (0.047) (0.058) (0.201)
CD test statistics 0.94 0.30 0.55 043 0.02 0.11 0.21 0.05 0.56
NxT 1599 1657 1599 1581 1652 1581 1562 1645 1562

Notes: The cross-sectionally augmented ARDL (CS-ARDL) regressions include the cross-sectional average of the dependent variable and the regressors together with three lags of these cross-sectional averages. The cross-

sectionally augmented ARDL specification is given by: Ay, =¢ +Zf’_ oA, + Z}"_OB'”XIH +ZT_O ;}EH +e, where x. = (Adn,ﬁn)' . Zt

and 3. See also the notes to Table 14.

)' X4=1-3" @, and 0, = l{lzioﬁw, and P=1,2
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Table 18: Mean Group Estimates of the Long-Run Effects Based on the Cross-Sectionally Augmented Distributed Lag (CS-DL) Approach,

1966-2010
CS-DL (1 lag) CS-DL (2 lags) CS-DL (3 lags)
(a) (b) (© @) (b) (c) @) (b) (©
D seskok —_ seskok seskok —_ seoksk seokok —_ seskeok
Ous -0.084 -0.087 -0.078 -0.084 -0.068 -0.082
(0.013) (0.014) (0.014) (0.017) (0.014) (0.020)
[ p— sk stk p— sk ek p— ek sk
0 -0.066 -0.089 -0.072 -0.086 -0.072 -0.086
(0.021) (0.026) (0.024) (0.037) (0.030) (0.040)
CD test -1.54 -0.21 1.16 -1.23 0.17 0.73 -1.09 -0.46 0.63
statistics
N xT 1601 1661 1601 1586 1661 1586 1571 1660 1571

based on the following specification: Ay, = ¢, + elixn + ZH‘S;AXH L+ a;lnyI + 23 m'i o Xt_t + @, - See also the notes to Table 14.
/=0 t- =0 i,

Notes: The cross-sectionally augmented distributed lag (CS-DL) regressions include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages of the regressors. The estimates are

Table 19: Mean Group Estimates of the Long-Run Effects of the Log of Debt/GDP ratio and Inflation/CPI on the Log of Output Based on
the Cross-Sectionally Augmented Distributed Lag (CS-DL) Approach, 1965-2010

CS-DL (1 lag) CS-DL (2 lags) CS-DL (3 lags)
(i) (i) (i) (i) (i) (i)
3. -0.068"" -0.075™ 20.057™ 0,066 -0.048" -0.051"
(0.018) (0.020) (0.019) (0.024) (0.025) (0.027)
: 0.095 — 0.057 — 0.029 —
0,
(0.075) (0.102) (0.128)
. — 20.008 — 20.001 — 20.008
0p
(0.042) (0.052) (0.057)
NxT 1618 1641 1603 1626 1588 1611

based on the following specification: Y, =G+ e;xn + Z

P
p=0 I

Notes: The cross-sectionally augmented distributed lag (CS-DL) regressions include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages of the regressors. The estimates are

o X +e, Where in (i) Y isthe log of real GDP, x; = (dn,ﬂ'n)' , d,, isthe log of the debt/GDP ratio, and 7T, is the inflation

1" —
5' Axi‘t—f + wiy Yt + Z;:Oml‘xf

rate and in (ii) Y;; isthe log of real GDP, X = (d ity pit) , dit is the log of the debt/GDP ratio, and [J;; is the log of the CPI. See also the notes to Table 14.
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Table 20: Estimates of the Average Threshold Effects on Output Growth, 1966-2010

T | 30 | 40 | 50 | 60 70 80 90
(i) Pooled OLS Estimates with Iit(z'), where 1,,(7) = | (dit > |Og(‘£'))
seskeok seskeok seskok seoksk seskeok seskok seskeok
}D/ -0.008 -0.009 -0.009 -0.009 -0.009 -0.009 -0.011
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.004)
A seskeok seksk seskeok stk stk seoksk stk
Cr 0.043 0.042 0.041 0.040 0.039 0.039 0.039
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
N 40 40 40 40 40 40 40
NXT 1696 1696 1696 1696 1696 1696 1696
i) Mean Group Estimates wit AT
(ii) G i ith |,
0 -0.008 " -0.010"" -0.012"" -0.011™" -0.016"" -0.020"" -0.021""
yf
(0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004)
Py seskeok seksk seskeok seskeok seskeok seoksk stk
CT 0.045 0.046 0.043 0.041 0.041 0.044 0.048
(0.003) (0.004) (0.003) (0.003) (0.003) (0.004) (0.004)
N 32 36 31 31 28 19 14
NXT 1353 1531 1322 1332 1203 810 589
(iii) CS-DL Mean Group Estimates (3 lags) including Iit(T)
-0. -0.004 -0. -0.005 -0. -0.001 -0.
0 0.006 0.00. 0.008 0.00 0.009 0.00 0.006
yT
(0.009) (0.005) (0.009) (0.006) (0.006) (0.009) (0.007)
-0.071%** ook ok ok ook ok ok
g Wy -0.087 -0.076 -0.063 -0.076 -0.089 -0.109
(0.024) (0.022) (0.025) (0.026) (0.025) (0.031) (0.037)
-0.095* -0.062 -0.079 -0.142
0 -0.090 * -0.161"" 0138
(o
(0.050) (0.045) (0.052) (0.049) (0.053) (0.061) (0.110)
N 32 35 31 31 28 18 14
NXxT 1251 1377 1226 1236 1115 710 547

. . . . .. ] 2, o 3, _
Notes: The estimates are based on the following specifications: (i) Ay, =c_+y, 1, (z) +e;, (i) Ay, = ¢, +7;. 1,(z) + &, (iii) Ay, =c;, +7,. 1, (z) +0,x, + Zai,AxiH +w, Ay, + Z(Divx/)(t—/ +e,

where In (1) = I(dn > Iog(r)), yit is the log of real GDP, X, = (Adnl

to Table 14.

/=0

/=0

;fn)' , dit is the log of the debt GDP ratio, and 7T;, isthe inflation rate. The cross-sectionally augmented distributed lag (CS-DL) regression

(iii) include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages of the regressors. We report heteroscedasticity-robust standard errors for specification (i). See also the notes
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Table 21: Estimates of the Average Threshold Effects on Output Growth Based on the Cross-Sectionally Augmented Distributed Lag (CS-
DL) Approach with Three Lags, 1966-2010

T | 30% | 40% 50% | 60% 70% 80% 90%
(iv) with 1,,(7) and 1, () x max(0,Ad,)
0 0.002 0.001 -0.006 -0.005 -0.018 -0.009 -0.001
7.
(0.005) (0.005) (0.007) (0.006) (0.011) (0.015) (0.018)
-0.005 0.018 -0.028 -0.127
il 0116 019" 20.140"
V.
(0.025) (0.024) (0.038) (0.045) (0.080) (0.094) (0.062)
D seskeok seskeok seskok * sk seskok seskeok
0 . -0.085 -0.100 -0.079 -0.050 -0.064 -0.088 -0.100
7,Al
(0.031) (0.025) (0.028) (0.027) (0.028) (0.034) (0.038)
-0.073 -0.118
g 20.119™ 0.099 ™ 0.085™" 0.155 " 20.125"
(0.047) (0.047) (0.049) (0.039) (0.057) (0.064) (0.103)
N 30 33 31 31 25 18 14
NXT 1184 1310 1226 1236 999 710 547
(v) With I, (r) x max (0, Ad,)
0 -0.001 -0.001 -0.060 0113 -0.158™" 0171 -0.159 "
7.
(0.024) (0.024) (0.040) (0.044) (0.057) (0.052) (0.046)
u seskeok seskeok seskok sk stk sk sk
0 -0.090 -0.100 -0.069 -0.056 -0.070 -0.066 -0.080
(0.025) (0.024) (0.025) (0.024) (0.021) (0.028) (0.035)
-0.061 -0.031
g -0.087" 008" -0.085" 0.096 " 0135
(0.037) (0.040) (0.045) (0.042) (0.049) (0.058) (0.080)
N 38 36 32 31 28 18 14
NXT 1487 1414 1263 1236 1115 710 547
. . e . . 2 . 3 .
Notes: The estimates are based on the following specifications: (I)Ayn =c, +7,1,(z)+ 7’;[' L) x max(O, Ad, )]+ QIJXH + Zﬁ.z.rAX.,u , +a,, Ay, + Z“oi‘xhrxw +e,,

/=0 /=0
' 2 o 3, _ _ . —_ \ .
(i) Ay, = ¢, + 72 [1,(0) xmax(0,Ad, )]+ 0, X + D8, AX, ,* + @, Ay, + Do, xes +e,, Ve 1 (z) = 1(dy > log(z)), Yy isthe log of real GDP, X;, = (Ady, 7 ) , g isthe log of the debr
=0 /=0
GDP ratio, and 7T;; is the inflation rate. The cross-sectionally augmented distributed lag (CS-DL) regression (iii) include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages
of the regressors. See also the notes to Table 14.
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8 Mathematical Appendix
We start by briefly summarizing the notations used in the paper, and introduce new notations
which will prove useful in the proofs provided below. We use <a, b) =ab to denote the inner

product (corresponding to the Euclidean norm) of vectors a and b. |A|, = maxzin_l‘aij‘, and
1<j<n =

A, = maxz ]Ja”‘ denote the maximum absolute column and row sum norms of A e M™",

respectively, where M™" is the space of real-valued nxn matrices. |A[= w/,oiA'Ai is the
spectral norm of A, p(A) is the spectral radius of A, Col(A) denotes the space spanned by
the column vectors of A, and A" is the Moore-Penrose pseudoinverse of A . Note that
lal| = m = \/aa corresponds to the Euclidean length of vector a.

Let z,, :(yn,x'n), Zot :(ym, ) Z Wz, A=(1-L), L is the lag operator,

Yipn Xli,p+l AXIi,p+l AXIi,p AXliz
y, = e x, =] e | ax, =] e Mo M|
T-pxl : T-pxk : (T=p)xpk . . .
Yir XIiT AXjr AXizy o AXir_pa
Z p+1 AXw p+1 A w,p Aiwz Vli,p+l
Z - i,p+2 AX — AXW, p+2 AXw p+1 AYw3 V Vi,p+2
(T—p)xk+1 (T_p)xwgk : T—p|><k :
Z; AX,;  AX,1, AXyy1opi Vir
Qwi = (QwiAxip)’ Qw = (ZW’AXWP)’
Mql = IT—p Q (Q Q ) QW|1 (8.1)
Vip :('Yn(ol'Yn SO0y )
flp+1_/ ‘9i,p+1

f &
Fy = (Fop Ry Fip) Ry | 727 [ fore =01,2,...p.andg, =| 22 (82)

T~ pxmp T—pxm
f1l'—/ &ir

Using the above notations, model for the dependent variable can be written as

Y = X0, + AXipozip + prip + +¢g,

fori=1,2,.. N, where o, is pk x1 vector containing the first p coefficients vectors of the

8§ ,9”) , and

polynomial a,(L) stacked into one single column vector, | = (9 T

1,p+1?

G, = i ¢i/+l(BIiAXi,t—/,+l +7i ft—/,)’

/=p+l

fori=12,.,N and t=p+1,p+2,..,T.The model for regressors can be written as
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X =Fol +V,

fori=1,2,.,N.
Define also the following projection matrix
My =1, —H, (leini )+ lei’ (8.3)
T-pxT-p
in which
h\le,p+l
hw +2
Hwi = (Hw’Axip)’ Hw = lp !
T—pxk(p+2}+1 T—pxk(p+1}+1 :
hpr,T
and
0,I, —a, (L), +v,(L)
T,
1- LT,
hwpt = ( ) —W ft’
K(p+L}ixd L1-L)T,
LPM1-L)
where

s, -z..,rw w.r.,a gvviamu,yw(u:i“;wiyi(u

and y,(L)= Z:O:o(l’ipYi L®.

8.1 Proofs of Theorems
Proof of Theorem 3.

We have
1, -1, -1,
0 1 & 1 & XM Fy. 1 &80 XM . 1 &8O XM g
IN| Ouc—0 |=—— Do, +—— > iy Td el P L~ N gy S a
ve N & NZ.;‘T T \/WZ;‘T T N;T T
(8.4)

0 .
where Wir =T XM X;,

fo f, o T
T I:p( 1): o
PP i g fT—p
Vip = (’Yli’q)iyli""’(oipyli) v (‘gi,p+l"“9i,p+l"""9i,T) , and

G, = i ¢i/+l(BIiAXi,t—/,+l +7i ft—/,)'

(=p+l
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i
Consider the asymptotics (N, T, p)—oo such that \/prp — 0, for any constant 0< p <1

and p*T — U, 0<U<oo. Inwhat follows we establish convergence of the individual terms
on the right side of (8.4).

It follows from (8.26) of Lemma 1 and (8.27) of Lemma 2 that

N 12\, i s

Yeir—-X, = op(N )unlformlylnl. (8.5)
(8.5), (8.28) of Lemma 2, and (8.30) of Lemma 3 imply

N[ XM p
ZT.T Al ~0. (8.6)

Consider now the second term on the right side of (8.4), which involves common factors and
their loadings. In the previous literature on CCE estimators, Pesaran2006b established the
asymptotic results for the term involving factors and their loadings in the expression for his
CCEMG estimator by focusing on the properties of the matrix (using Pesaran2006b's

notations) X;M F/T, see equation (40) in Pesaran2006b, in the full rank case, and by
exploring the relation (still using Pesaran2006b's notations) MqFEW =0, see p. 979 of
Pesaran2006b, in the rank deficient case. But unlike in the set-up of Pesaran2006b, the
dimension of X}Mtip/T in this paper increases with the sample size, and furthermore

Mthppr is not necessarily zero since Fﬁwp (due to the truncation lag p) does not
necessarily belong to the linear space spanned by the column vectors of H, . We therefore
focus on the elements of the vector X'iMtipyip/T below, which has fixed (finite) dimensions,

and we also take advantage of the exponential decay of certain coefficients below. Using
(8.5), boundedness of X" (by Assumption 5), and result (8.29) of Lemma 2 we obtain

-1 '
XM X XiMF XM, X, XM, F p
iVlgi' p hi hi'p
Z[ j T Tip ~ Z[ T j T Vip ’kgl'

i=1

Vector y,, can be written as vy, = (pr T_]Mp)-i- M, and

TXMFr, =T X MF, 70 + T XMF, (1, 10 )

hi' p hi' p

Note again that Fﬁwp does not necessarily belong to the linear space spanned by the column

vectors of H,; due to the truncation lag p. But Assumption 4 constraints the support of ¢,
to fall strictly within the unit circle, which implies that there exists a positive constant p <1

such that |§0i| < p <1 for all possible realizations of the random variable ¢, . Therefore, under

Assumptions  3-4, the coefficients in the polynomials aW(L):ZiN:lwiai(L) and

(D)= wr (L), where a,(L)=>" o/(1-¢,) Bl and v,(L)=Y " p’yL", decay
exponentially to zero™ and we have
TulLs P~ E[FL (L, p)|hy [=0,(07), (8.7)

'5See PesaranChudik2013 for a related discussion.
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uniformly in t, where ¥,(L,p)=>"" oZ. _We/y,L' is the truncated polynomial of 7, (L)

featuring only orders up to L". Using the properties of orthogonal projectors, we obtain™®
IMuF ] <R - Hue], 88)

for any k(p+1)+1x1 vector c. Let ¢ be defined by E[?W(L, p)ft‘hwpt]: Ch,y . Then it
follows from (8.7) that the individual elements of T —px1 vector (Fﬂwp - Hwic) are
uniformly Op(pp) and using (8.8) we have

M, F ] =0, [T - p1p7]

Using now Cauchy-Schwarz inequality, we obtain®’

T X M,F,7,, =0,(0") (8.9)

Noting that \/pr — 0, and using (8.5) and boundedness of £.* (by Assumption 5) we
have

TXMF, — b
z XMhIX hi p’YWp_)O,
= T T

and it now follows that

-1 ,
 XM,F, - Z XM, X, ) XM,F,
NE=r T T

i=1

iy~ M) > 0. (810)

Let us denote individual

‘M, X M, .F —
Now consider the term LEN_ XiMiX; LT
NN = T T

columns of F, as fp,[j]’ for j=1,2,...,mp, and individual elements of ﬁva and ?Wp as ﬁ}wp'j

and ;Wp'j , respectively, for j=1,2,...,mp. FpﬁMp thus can be written as ZTflva[j]n%Nij . Let
o=
J L
Voi t M j

where y, ; isthe j-thelement of the vector E(yip) Note that plimn_..7; =1 if y,; =0 and

Plimno7; =0 if Yo #20. Expression Fpﬂpr can now be written  as

Follyp = Z, Cfolil w7 and

' + '
*We use the following property. Let A be S, X S, dimensional matrix, §; > S, and let |\/|A = |Sl —A(A A) A be the

corresponding orthogonal projector that projects on orthogonal complement of the space spanned by the column vectors of A . Then for
any S; X 1 dimensional vector X and any S, X 1 dimensional vector C, ”M AX" < "X - AC".

“(ab)<lafo]. we w a=TX, as b=MFy,. wee [&]=0,[T-p)*] o

o] =0,|T - p)?0°]
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X.M,.F mlm

mp z

=1

. }/WPJ N
XM f r0—
Using the same arguments as in the derivation of (8.9), we obtain %”'mywp'j = Op(pp)
and using the properties of 7; we have
m X Mh,f
Z p }/WPJ J P(ppp)
j=1

But \/ﬁppp —» 0 and therefore

XM, F
IN =Ty 50. (8.11)

ywp kx1

Using this result in (8.10) together with (8.5) and the boundedness of HE;l” we obtain

-1 ,
1 30 XMyF, XM X, ) XMyF,  »
_Nzl‘;lu Tons Z[ T s Mg (8.12)

i=1

Consider now the third term on the right side of (8.4). Let X, denote the column (t— p) of

. - ) .
the matrix X;M,;, for t=p+1,p+2,...T. We have X, =0, (1) uniformly in i, Wir :Op(l)

uniformly in i, and

ENNY,

<JIN i |¢i|/+lE|BIiAXi,t—ﬁ+l i ft—/,| <K+JNp”, (8.13)
(=p+l

p
uniformly in i and t. It follows that E|\/Wl9It -0 as VNpP -0,

anSn 5 Ouniformlyini, (8.14)

t=1

and

1

=>'¥ —0. (8.15)
N i=1 kx1

Using (8.6), (8.12) and (8.15) in (8.4), we obtain

\/W{%MG—G}? givs

-1 N
N [ [x;Mwi JIN ijp
iT
T

where

1 3 1 3 X'-MX XMlF
AN & Z[ T J Th My (8.16)
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and recall that v; and m,, are independently distributed across i. It now follows that when
n,; is independently distributed from I'; and regardless whether the rank condition holds,

0 d
\/W[GMG - 9} —->N (kol, I ) where

13 e
Zye =25+ lim {szinginyQifzigl} (8.17)
i=1

p,N—>w

in  which  Q,=Var(9,), @ =Var(y;)), and X =plimT'XM,X, and
Q; = plimT *X;M,;F. When the rank condition stated in assumptions of Theorem 1 holds

[ d
then Q = 0, and therefore even if m, is correlated with T, N{GMG—G}:%Z:\;UP

Consistency of the nonparametric estimator can be established in the same way as in
ChudikPesaran2013a.

Proof of Theorem 4.
Consider

(ZWJ {%P_e}:[iwi X'i'\ﬁmXij Nl Sw XM e +a) (@1g)

i=1

[ =
where | is defined below (8.4), wi =+/Nw, (ZN wz) " and, by granularity conditions (19)-

i j=1 i

(20) there exists a constant K < oo (independent of i and N ), such that

We focus on the individual terms on the right side of (8.18) below and assume that

U
Wi| = < K. (8.19)

(N,T, p)—l>oo such that +/N pp® — 0 for any constant 0< p <1 and p*/T - U, 0<U<.
Using results (8.26) of Lemma 1 we have

NOXIM XN p

;Wi % - Y WX, -0,
for any weights {w,} satisfying granularity conditions (19)-(20). The limit
|imN%ZLwiEiq =¥ exists by Assumption 5 and furthermore, by the same assumption, ¥*
is nonsingular. It therefore follows that

. -1
[2 W, XiMgX; qule —>p | el (8.20)

i=1
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Noting that y,, can be written as y,, =7y, + ", —",,, and using (8.9), (8.11), (8.19) and
JNp® =0 we obtain*®

0 XMF, 1 &0 XMF, v
Zw. i—m;wi T“ "1, 0. (8.21)
(8.14) and (8.19) imply
0 XMy
Zw. 5. (8.22)

kx1

Result (8.28) of Lemma 2 and result (8.30) of Lemma 3 establish

XM.g p
JN Z Tq.ﬁ. —>k01uniformlyini,

i
and therefore (noting that w; is uniformly bounded in i, see (8.19)),

DXMe

N[
z = 13w [\/_N
N i
Using (8.20), (8.21), (8.22), (8.23) and result (8.27) of Lemma 2 in (8.18), we obtain

v 2 ) d gt 1 0 XMm(XiVi"‘Fpnip)
(lewj 0r Z T '

Assumption 5 is sufficient for the bounded second moments of X;M, . X./T and X M FIT .

XM e
| ‘*'s'j—'lkol. (8.23)

4

U
In particular, condition E| xis |< K, for s=1,2,..,k, is sufficient for the bounded second

moment of X;M,;X;/T . To see this note that

DI T
Xipt| = Z |stX|pt )
t=1 t=1

L L

2

for any s,p=12,..,k. But by Cauchy-Schwarz inequality, —we have

2 2 4 4 1/2
0 0 [ [
E| Xist Xipt | <| E| Xist |E| Xipt , and therefore bounded fourth moments of the elements of

(8 21) can also be established by noting that the column vectors of X Z WX are included in Qwi and therefore

i=1 !
X, M, =0.
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[ :

xit are sufficient for the existence of an upper bound for the second moments of X;M,; X,/T .
nF,/T has bounded second moments.
Note also that v; and m;, are independently distributed across i; and, independently

Similar arguments can be used to establish that X;M

distributed of M,;, F, and, assuming that y; is independently distributed of T, also X;. It
therefore follows, using similar arguments as in Lemma 4 of Pesaran2006b, that

(gwfj_m{gp— e}i N(0,X,)

where
X, =V 'RY, (8.24)

in which
2

3 130 .
¥ = lim ZWiZi’R* = lim —ZWi (ZiQGZi +QinyQif ),

N—o 527 N—o i=1

Q, =Var(0,), @, =Var(y,), L, = plimT XM X; and Q; = plimT "X;M,F. X, can be
estimated as

0 N NN
Tp = (ZV\/fJ‘I’*‘lR*‘I’*‘l, (8.25)
i=1

where

- N (XM X D O Do ™M X
R*:Lz |2 —— L 0i—0Oms | 0i—Owne M
N-143 T T

When the rank condition holds, then column vectors of F, belong to the space spanned by
the column vectors of H,,, and therefore regardless whether n, is correlated with T'; or not,

N[ d . . gyl
W 0-—-0 |>N(0,Z,) in the full rank case with X, reduced to ¥*'R;¥"" and

U
Qi = k0 . Consistency of Xp can be established using similar arguments as in Pesaran2006b.

8.2 Lemmas

i
Lemma 1 Suppose Assumptions 1- 5 hold and (N,T, p)— oo such that p*/T -0, 0<U<o
Then,

‘M.X. P
%—)Ei,uniformlyini. (8.26)
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Proof. Let &, denote the individual rows of M, X; so that

XiMX; _T - p 1 <
Th t%ﬁhltahlt

Ergodicity in mean of &, has been established in ChudikPesaran2013a,
(ChudikPesaran2013a, Lemma A3). This completes the proof of (8.26).

i
Lemma 2 Suppose Assumptions 1- 5 hold and (N,T, p)— oo such that p*/T -0, 0<U<o
Then,

X M X, p
JNE T \/_X l\_/ll_“'x — 0, uniformlyini. (8.27)
X:M_ ¢ ‘M.g P
JIN 'Tq's' —\/Wx'h_l/_lh's' —>k91,uniformlyini. (8.28)
XM F XM, F [ o
JNZE qu PN Thl pH — 0, uniformlyini. (8.29)
1

Proof. Results (8.27) and (8.28) can be established in the same way as ChudikPesaran2013a,
(ChudikPesaran2013a, results A.21 and A.22 of Lemma A6). Consider now (8.29). F, can be

written as F =[F(0),F(l),...,F(p)], where F(/):(f N ...,fT_/) for /=0,1,2,...,p. Using

p+1-¢? " p+2-01
the same arguments as in ChudikPesaran2013a, (ChudikPesaran2013a, results A.23 of
Lemma A6), it can be shown that

mXiMti(/,) _NXiMmF(/,)_’)) 0.

T T kxm
uniformly in i and /. This is sufficient for (8.29) to hold.

i
Lemma 3 Suppose Assumptions 1- 5 hold and (N, T, p)—co such that p*T -0, 0<U<oo.
Then,

XM, 5 O uniformlyini. (8.30)

Y
Proof. Results (8.27) can be established in the same way as ChudikPesaran2013a,
(ChudikPesaran2013a, results A.26).
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