


DEBT, INFLATION AND GROWTH: 
ROBUST ESTIMATION OF LONG-RUN EFFECTS  

IN DYNAMIC PANEL DATA MODELS 

Alexander Chudik, Kamiar Mohaddes, M. Hashem Pesaran, and Mehdi Raissi 

Working Paper 817 

December 2013 

We are grateful to Luis Catão, Markus Eberhardt, Thomas Moutos, Kenneth Rogoff, 
Alessandro Rebucci, Ron Smith, Martin Weale, Mark Wynne, and seminar participants at the 
International Monetary Fund and participants at the Conference on MENA Economies 2013 
for constructive comments and suggestions. The views expressed in this paper are those of 
the authors and do not necessarily represent those of Federal Reserve Bank of Dallas, the 
Federal Reserve System, the International Monetary Fund or IMF policy. Hashem Pesaran 
acknowledges financial support under ESRC Grant ES/I031626/1. 

Send correspondence to:  
Kamiar Mohaddes 
University of Cambridge 
km418@cam.ac.uk  



 

First published in 2013 by  
The Economic Research Forum (ERF) 
21 Al-Sad Al-Aaly Street 
Dokki, Giza 
Egypt 
www.erf.org.eg 
 
 
Copyright © The Economic Research Forum, 2013 
 
All rights reserved. No part of this publication may be reproduced in any form or by any electronic or 
mechanical means, including information storage and retrieval systems, without permission in writing from the 
publisher. 
 
The findings, interpretations and conclusions expressed in this publication are entirely those of the author(s) and 
should not be attributed to the Economic Research Forum, members of its Board of Trustees, or its donors. 
 



 

 1

Abstract 

This paper investigates the long-run effects of public debt and inflation on economic growth. 
Our contribution is both theoretical and empirical. On the theoretical side, we develop a 
cross-sectionally augmented distributed lag (CS-DL) approach to the estimation of long-run 
effects in dynamic heterogeneous panel data models with cross-sectionally dependent errors. 
The relative merits of the CS-DL approach and other existing approaches in the literature are 
discussed and illustrated with small sample evidence obtained by means of Monte Carlo 
simulations. On the empirical side, using data on a sample of 40 countries over the 1965-
2010 period, we find significant negative long-run effects of public debt and inflation on 
growth. Our results indicate that, if the debt to GDP ratio is raised and this increase turns out 
to be permanent, then it will have negative effects on economic growth in the long run. But if 
the increase is temporary, then there are no long-run growth effects so long as debt to GDP is 
brought back to its normal level. We do not find a universally applicable threshold effect in 
the relationship between public debt and growth. We only find statistically significant 
threshold effects in the case of countries with rising debt to GDP ratios. 

JEL Classifications: C23, E62, F34, H6. 

Keywords: Long-run relationships, estimation and inference, large dynamic heterogeneous 
panels, cross-section dependence, debt, inflation and growth, debt overhang. 
 

 
 

 ملخѧѧص
 

على  تجریبیةنظریة ومساھمتنا . على النمو الاقتصاديعلى المدى الطویل الدین العام والتضخم الناجمة عن تبحث ھذه الورقة الآثار 

تقدیر الآثار على المدى الطویل في نماذج ل)  CS- DL( تباطئةم مقطعیة  ھیتوزیع زیادة نھجنطور على الجانب النظري ، .  حد سواء

والنھج  CS- DLالمزایا النسبیة للنھج  ھذه الورقة وتناقش. التابعةالمقطعیة خطاء لأات اذدینامیة ال المسوحوغیر المتجانسة البیانات 

على الجانب . مع الأدلة التي تم الحصول علیھا عینة صغیرة عن طریق محاكاة مونت كارلو وضحتالأخرى القائمة في الأدب و 

من الدین على المدى الطویل  ةكبیر، نجد آثار سلبیة  2010-1965بلدا خلال الفترة  40من  باستخدام البیانات على عینة التجریبي ، و

تشیر نتائجنا أنھ إذا رفع نسبة الدین إلى الناتج المحلي الإجمالي ، ویحول ھذه الزیادة إلى أن تكون دائمة ، . العام والتضخم على النمو 

أي آثار   لن یكون لھا،  ةمؤقتولكن إذا كانت الزیادة . قتصادي في المدى الطویلبعد ذلك سوف یكون لھا آثار سلبیة على النمو الا

 قابلمستوى لا نجد . یعود إلى مستواه الطبیعيولا یتم جلب الدین إلى الناتج المحلي الإجمالي انھ النمو على المدى الطویل طالما 

ذات دلالة إحصائیة في حالة البلدان مع ارتفاع نسبة الدین إلى  مستوىنجد سوى لا . للتطبیق عالمیا في العلاقة بین الدین العام والنمو

  .الناتج المحلي الإجمالي
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1.  Introduction 
The debt-growth nexus has received renewed interest among academics and policy makers 
alike in the aftermath of the recent global financial crisis and the subsequent euro area 
sovereign debt crisis which has triggered trillions of dollars in fiscal stimulus across the 
globe. This paper investigates whether a build-up of public debt slows down the economy in 
the long run. The conventional view is that public debt (arising from deficit financing) can 
stimulate aggregate demand and output in the short run, but crowds out capital and reduces 
output in the long run. In addition, there are possible non-linear effects where the build-up of 
debt can harm economic growth especially when the level of debt exceeds a certain threshold, 
as estimated, for example, by   Reinhart2010 to be around 90% of the GDP. However, such 
results are obtained under strong homogeneity assumptions across countries, and without 
adequate attention to dynamics, feed-back effects from debt to GDP, and error cross-sectional 
dependencies that exist across countries, due to unobserved common factors or spill-over 
effects that tend to magnify at times of financial crises. Due to the intrinsic cross-country 
heterogeneities, the thresholds are most-likely country specific and estimation of a universal 
threshold based on pooling of observations across countries might not be informative to 
policy makers interested in a particular economy and their use could be even misleading. 
Relaxing the homogeneity assumption, whilst possible in a number of dimensions (as seen 
below), is difficult when it comes to the estimation of country-specific thresholds, because 
due to the non-linearity of the relationships involved, identification and estimation of 
country-specific thresholds require much larger time series data than are currently available. 

In this paper we model the growth rates, as opposed to levels of (log) GDP and debt to GDP, 
which allows us to make inferences about the long-term effects of debt on growth, regardless 
of thresholds. Using recent developments in the literature on dynamic heterogeneous panels, 
we provide a fresh re-examination of debt-growth nexus while allowing for dynamic 
heterogeneities and cross-sectional error dependencies. Our focus will be on the long-run 
impacts of debt and inflation on GDP growth which will be shown to be robust to feedbacks 
from growth to debt and inflation. We use a relatively large panel of advanced and emerging 
market economies, and jointly model inflation, debt, and growth. We consider the role of 
inflation in our long-run analysis because, in some countries in the panel that do not have 
active government bond markets, deficit financing is often achieved through money creation 
with high inflation. Like excessively high levels of debt, high levels of inflation, when 
persistent, can also be detrimental for growth. By considering both inflation and debt we 
allow the regression analysis to accommodate both types of economies in the panel. 
The paper also makes a theoretical contribution to the econometric analysis of the long run. A 
new approach to the estimation of the long-run coefficients in dynamic heterogeneous panels 
with cross-sectionally dependent errors is proposed. The approach is based on a distributed 
lag representation that does not feature lags of the dependent variable, and allows for a 
residual factor error structure and weak cross-section dependence of idiosyncratic errors. 
Similarly to Common Correlated Effects (CCE) estimators proposed by Pesaran2006b, we 
appropriately augment the individual regressions by cross-section averages to deal with the 
effects of common factors. We derive the asymptotic distribution of the proposed cross-
section augmented distributed lag (or CS-DL in short) mean group and pooled estimators 
under the coefficient heterogeneity and large time (T ) and cross section ( N ) dimensions. 
We also investigate consequences of various departures from our maintained assumptions by 
means of Monte Carlo experiments, including unit root in factors and/or in regressors, 
homogeneity of coefficients or breaks in error processes. The small sample evidence suggests 
that the CS-DL estimators often outperform the traditional approach based on estimating the 
full autoregressive distributed lag (ARDL) specification. However, the CS-DL approach 
should be seen as complementary and not as superior to the ARDL approach due to its two 
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drawbacks: unlike the panel ARDL approach it does not allow for feedback effects from the 
dependent variable onto the regressors, and its small sample performance deteriorates when 
the roots of the AR polynomial in the ARDL representation are close to the unit circle. The 
relative merits of different approaches are carefully documented in the paper. 
Our empirical contribution is in estimating long-run effects of debt and inflation on economic 
growth in a panel of 40 countries over the period 1965--2010. Cross-country experience 
shows that some economies have run into debt difficulties and experienced subdued growth 
at relatively low debt levels, while others have been able to sustain high levels of 
indebtedness for prolonged periods and grow strongly without experiencing debt distress. 
This suggests that the effects of public debt on growth varies across countries, depending 
critically on country-specific factors and institutions.1 It is therefore important that we take 
account of cross-country heterogeneity. The dynamics should also be modelled properly, 
otherwise the estimates of the long-run effects might be inconsistent. Last but not least, it is 
now widely agreed that conditioning on observed variables specific to countries alone need 
not ensure error cross-section independence that underlies much of the panel data literature. It 
is, therefore, also important that we allow for the possibility of cross-sectional error 
correlations, which could arise due to omitted common effects, possibly correlated with the 
regressors. Neglecting such dependencies can lead to biased estimates and spurious inference. 
We adopt a cross-section augmented ARDL approach (CS-ARDL), advanced in 
ChudikPesaran2013a, and a CS-DL approach developed in this paper. This estimation 
strategy takes into account all three key features of the panel (i.e. dynamics, heterogeneity 
and cross-sectional dependence) jointly, in contrast with the earlier literature surveyed in 
Section 5. We study whether there is a common threshold for government debt ratios above 
which long-term growth rates are adversely affected (especially if the country is on an 
upward debt trajectory). We particularly look into debt trajectory beyond certain debt 
threshold levels as to our knowledge no such systematic analysis has been carried out in the 
past. We do not find a universally applicable threshold effect in the relationship between debt 
and growth. We only find a statistically significant threshold effect in the case of countries 
with rising debt to GDP ratios. The debt trajectory seems much more important than the level 
of debt itself. Provided that debt is on a downward path, a country with a high level of debt 
can grow just as fast as its peers. This "no-simple-debt-threshold-level" finding can be driven, 
among other possible factors, by cross-country differences in (i) overall net wealth 
(international investment position) and the depth of financial system; (ii) investor behavior 
(home bias); (iii) ability to generate primary surpluses and interest costs--growth 
considerations; and (iv) confidence factors. Our results also show that, regardless of the 
threshold, there are significant and robust negative long-run effects of debt on economic 
growth. By comparison, the evidence of a negative effect of inflation on growth is less strong, 
although it is statistically significant in the case of most specifications considered. 
Our results suggest that if the debt level is raised and this increase is permanent, then it will 
have negative effects on growth in the long run. On the other hand, if the debt rises (for 
instance to help smooth out business cycle fluctuations) and this increase is temporary, then 
there are no long-run negative effects on output growth. The key in debt financing is the 
reassurance, backed by commitment and action, that the increase in government debt is 
temporary and will not be a permanent departure from the prevailing norms. 
The remainder of the paper is organized as follows. We begin with the definition of long-run 
coefficients and discuss their estimation in Section 2. The next section introduces the CS-DL 
                                                        
1These might include prospects for primary fiscal surpluses and growth; cost of borrowing including both the interest cost of debt already 
contracted and market perceptions of a country's ability to service future borrowings; regulatory requirements; nature of the investor base 
and the track record of meeting its debt obligations (whether it had debt distress/lost market access); and vulnerability to shocks (confidence 
effects). 
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approach to the estimation of long-run relationships. Section 4 investigates the small sample 
performance of the CS-DL approach and compares it with the performance of the CS-ARDL 
approach by means of Monte Carlo experiments. Section 5 reviews the literature on long-run 
effects of inflation and debt on economic growth. Section 6 presents empirical findings on the 
long-run effects of debt and inflation on economic growth in our panel of countries. The last 
section concludes. Mathematical derivations and other supporting material are relegated to 
the Appendix. 

A brief word on notation: All vectors are column vectors represented by bold lower case 
letters and matrices are represented by bold capital letters.  AAA '=  is the spectral 
norm of A ,  A  is the spectral radius of A .2 )(= nn bOa  denotes the deterministic 
sequence  na  is at most of order nb . Convergence in probability and convergence in 

distribution are denoted by 
p
  and 

d
 , respectively.   

j
TN ,  denotes joint asymptotic in 

N  and ,T  with N  and T , in no particular order. We use K  to denote a positive fixed 
constant that does not vary with N  or T . 

2. Estimation of Long-Run or Level Relationships in Economics 
Estimating long-run or level relationships is of great importance in economics. The concept 
of the long-run in economics is associated with the steady-state solution of a structural model. 
Often the same long-run relations can also be obtained from arbitrage conditions within and 
across markets. As a result many long-run relationships in economics are free of particular 
model assumptions; examples being purchasing power parity, uncovered interest parity and 
the Fisher inflation parity. Other long-run relations, such as those between macroeconomic 
aggregates like consumption and income, output and investment, technological progress and 
real wages, are less grounded in arbitrage and hence are more controversial, but still form a 
major part of what is generally agreed in empirical macro modelling. This is in contrast to the 
analysis of short-run effects which are model specific and subject to identification problems. 
The estimation of long-run relations can be carried out with or without constraining the short-
run dynamics (possibly from a particular theory). In this section we focus on the estimation of 
long-run relations without restricting the short-run dynamics. In view of the empirical 
application that we have in mind, we shall assume that there exists a single long-run 
relationship between the dependent variable, ty , and a set of regressors.3 For illustrative 

purposes, suppose that there is one regressor tx  and suppose that  'ttt xy ,=z  is jointly 
determined by the following vector autoregressive model of order 1, VAR(1), 

,= 1 ttt eΦzz           (1) 

where )ij(=Φ  is a 22  matrix of unknown parameters, and  'xtytt ee ,=e  is 2 -dimensional 
vector of reduced form errors. Denoting the covariance of yte  and xte  by  xteVar , we can 
write 

  ,== txttxtytyt ueueeEe          (2) 

                                                        
2Note that if x  is a vector, then   xxxxx '' ==   corresponds to the Euclidean length of vector x . 
3The problem of estimation and inference in the case of multiple long-run relations is further complicated by the identification problem and 
simultaneous determination of variables. The case of multiple long-run relations is discussed for example in Pesaran1997. 



 

 5

where by construction tu  is uncorrelated with xte , namely   0=xtt euE . Substituting (2) for 

yte , the equation for the dependent variable ty  in (1) is 

.= 112111 txtttt uexyy           (3) 

Using the equation for the regressor tx  in (1), we obtain the following expression for xte  

,= 122121   tttxt xyxe   

and substituting this expression for xte  back in (3) yields the following conditional model for 

ty , 

,= 1101 ttttt uxxyy            (4) 

where 

.=,=,= 2212102111          (5) 

Note that tu  is uncorrelated with the regressor tx  and its lag by construction. (4) is 
ARDL(1,1) representation of ty  conditional on tx , and the short-run coefficients  , 0 , and 

1  can be directly estimated from (4) by least squares. Model (4) can also be written as the 
following error-correction model,  

   ,1= 011 ttttt uxxyy     

or as the following level relationship 

  ,~= tttt uxLxy   

where the level coefficient is defined by the ratio 

,
1

= 10






  

  tt uLu 11=~   is uncorrelated with regressor tx  and its lags, and   

LL  

0=
= , with 

ss
 

1=
=

 , for 0,1,2,...= , and      LLLL 10
1

0=
1==    


. Note that if tz  is 

 1I  then  '1,  is the cointegrating vector and the level relation is also cointegrating. 

The level coefficient   can still be motivated as the long-run outcome of a counterfactual 
exercise even if tz  is stationary . One possible counterfactual is to consider the effects of a 
permanent shock to the tx  process on ty  in the long run. Let  

 ,0,1,2,...=for,=,lim= ,1, heyEg xhtxtstyst
s

yt  


 I  

and similarly  

 ,0,1,2,...=for,=,lim= ,1, hexEg xhtxtstxst
s

xt  


 I  

where yt  and xt , respectively, are the deterministic components of ty  and tx  (in the 
current illustrative example deterministic components are zero) and tI  is the information set 
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containing all information up to the period t . Using (1) and noting that   xtxtyt eeeE = , we 
obtain yyt gg = , xxt gg = ,4 

  ,

1
1

1=
1

==

211222112211

1121

211222112211

2212

1
2 xx

x

y

g
g
























































 ΦIg  

and 

,
)(1

=
2111

2212







x

y

g
g

 

which upon using (5), yields, xy gg = , namely the long-run impact of a permanent change in 
the mean of x  on y  is given by  . Note that only in the special case when the reduced form 
errors are uncorrelated ( 0= ) then the short-run coefficient 0  in the ARDL model (4) is 
equal to 0  and the long-run coefficient   reduces to  1112 1/   . But in general, when 0
, the short-run coefficient 0  is non-zero and contemporaneous values of the regressor should 
not be excluded from (4). In the stationary case with regressors not strictly exogenous,   
depends also on the parameters of the tx  process and the estimation of   should therefore be 
based on (4). 

An alternative way to show that   is equal to the ratio xy gg /  is to consider the ARDL 
representation (4) for the future period ,st   given the information at time 1t . We first 
note that  

,= 1101 ststststst uxxyy     

and after taking the conditional expectation with respect to  0,1,2,...=for,=, ,1 he xhtxt I , 
taking limits as s , and noting that in the stationary case yyt gg =  and xxt gg = , we 
obtain 

,= 10 xxyy gggg    

and hence 

,=
1

= 10 






x

y

g
g

 

as desired. 

Regardless of whether the variables are  0I  or  1I , or whether the regressors are exogenous 
or not, the level coefficient   is well defined and can be consistently estimated. The rates of 
convergence and the asymptotic distributions of the ARDL estimates of   are established in 
Pesaran1999. See in particular their Theorem 3.3. 

2.1  Two approaches to the estimation of long-run effects 
Let ity  be the dependent variable in country i , itx  be the 1k  vector of country-specific 
regressors, and suppose that the object of interest is the long-run coefficient vector of country 
                                                        
4Note that in the stationary case   1

0=
= 

 ΦIΦ


. 
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i , denoted as iθ , or, in a multicounty context, the average long-run coefficients vector, 

i
N
iN θθ 1=

1=  . In modelling the relationship between the dependent variable and the 
regressors in a panel context, we need to allow for slope heterogeneity, dynamics and cross-
sectional dependence. This is accomplished by assuming that the dependent variable is given 
by the following ),( xiyi ppARDL  specification,  

,= ,
0=

,
1=

itti
'
i

xip

tii

yip

it uyy    





xβ        (6) 

,= itt
'
iitu fγ           (7) 

for Ni 1,2,...,=  and Tt 1,2,...,= , where tf  is an 1m  vector of unobserved common factors, 
and yip  and xip  are the lag orders chosen to be sufficiently long so that itu  is a serially 
uncorrelated process across all i . The vector of long-run coefficients is then given by 

.
1

=

1=

0=







i

yip

i

xip

i







β
θ           (8) 

There are two approaches to estimating the long-run coefficients. One approach, considered 
in the literature, is to estimate the individual short-run coefficients  i  and  iβ  in the 
ARDL relation, (6), and then compute the estimates of long-run effects using formula (8) 
with the short-run coefficients replaced by their estimates  i̂  and  iβ̂ . We shall refer to 
this approach as the "ARDL approach to the estimation of long-run effects". The advantage 
of this approach is that the estimates of short-run coefficients are also obtained. But when the 
focus is on the long-run then, under certain conditions to be clarified below, an alternative 
approach proposed in this paper can be undertaken to estimate iθ  directly. This is possible by 
observing that the ARDL model, (6), can be written as 

  ,~= itit
'
iitiit uLy  xαxθ         (9) 

where   itit uLu 1=~  ,   

LL i

yip
i   1=

1= ,  1= ii δθ ,       

LLLL iiii δβδ 

0=
1 == , 

  

LL i

xip
i ββ  0=

= , and   


LL ssi δα  





1=0=
= . We shall refer to the estimation of iθ  based 

on the distributed lag representation (9) as the "distributed lag (DL) approach to the 
estimation of long-run effects". Under the usual assumptions on the roots of  Li  falling 
strictly outside the unit circle, then the coefficients of  Liα  are exponentially decaying; and 
it is possible to show that, in the absence of feedback effects from lagged values of ity  onto 
the regressors itx , a consistent estimate of iθ  can be obtained directly based on the least 

squares regression of ity  on itx  and   ,0=
p

it x  where the truncation lag order p  is chosen 
appropriately as an increasing function of the sample size. But, when the feedback effects 
from the lagged values of the dependent variable to the regressors are present, itu~  will be 
correlated with itx  and the DL approach would no longer be consistent. Note that strict 
exogeneity is, however, not necessarily required for the consistency of the DL approach, 
since arbitrary correlations amongst the individual reduced form innovations in te  are still 
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allowed. After the individual estimates iθ̂  are obtained, either using ARDL or DL approach, 
they can then be averaged across i  to obtain a consistent estimate of the average long-run 
effects, given by i

N
iN θθ ˆ=ˆ 1 . 

2.2  Pros and cons of the two approaches to the estimation of long-run effects 
Consider first the ARDL approach, where the estimates of long-run effects are computed 
based on the estimates of the short-run coefficients in (6). In the case where the unobserved 
common factors are serially uncorrelated and are also uncorrelated with the regressors, the 
long-run coefficients can be estimated consistently from the Ordinary Least Squares (OLS) 
estimates of the short-run coefficients, irrespective of whether the regressors are strictly 
exogenous or jointly determined with ity , in the sense that  ''

ititit y xz ,=  follows a VAR 
model. The long-run estimates are also consistent irrespective of whether the underlying 
variables are integrated of order one,  1I  for short, or integrated of order zero,  0I . These 
robustness properties are clearly important in empirical research. However, the ARDL 
approach has also a number of drawbacks. The sampling uncertainty could be large especially 
when the speed of convergence towards the long-run relation is rather slow and the time 
dimension is not sufficiently long. This is readily apparent from (8) since even a small change 
to  i

yip
̂1

1=  could have large impact on the estimates of iθ  when  i
yip
̂

1=  is close to unity. 
In this respect, a correct specification of lag orders could be quite important for the 
performance of the ARDL estimates of iθ . Underestimating the lag orders leads to 
inconsistent estimates, whilst overestimating the lag orders could result in loss of efficiency 
and low power when the ARDL long-run estimates are used for inference. 
In the more general case when the unobserved common factors are correlated with the 
regressors then LS estimation of ARDL model is no longer consistent and the effects of 
unobserved common factors need to be taken into account. There are so far two possible 
estimators developed in the literature for this case:5 a principal-components based approach 
by Song2013 who extends the interactive effects estimator originally proposed Bai2008 to 
dynamic heterogeneous panels, and the dynamic common correlated effects mean group 
estimator suggested by ChudikPesaran2013a. A recent overview of these methods is provided 
in ChudikPesaran2013s. These estimators have (so far) been proposed only for stationary 
panels, and are subject to the small T  bias of the ARDL approach discussed above. Bias 
correction techniques can also be used, but overall they do not seem to be effective when the 
speed of adjustment to the steady state is slow.6 

The main merits of the DL approach that we develop below is that, once (9) is appropriately 
augmented by cross-section averages, it is robust along a number of dimensions that are 
important in practice and it tends to show better small sample performance when the time 
dimension T  is not very large. This includes robustness to the possibility of unit roots in 
regressors and/or factors, heterogeneity or homogeneity of short and/or long-run coefficients, 
arbitrary serial correlation in it  and tf  (note that iθ  is identified even when it  is serially 
correlated), number of unobserved common factors (subject to certain conditions), and weak 
cross-sectional dependence in the idiosyncratic errors, it . These are very important 
considerations in applied work. In addition, the CS-DL approach does not require specifying 
the individual lag orders, yip  and xip , and is robust to possible breaks in it . The main 
                                                        
5Related is also the quasi maximum likelihood estimator for dynamic panels by MoonWeidner2010a, but this estimators has been developed 
only for homogeneous panels. 
6ChudikPesaran2013a consider the application of two bias correction procedures to dynamic CCE type estimators, but find that they do not 
fully eliminate the bias. 
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drawback of the CS-DL approach, however, is that   itit uLu 1=~   is correlated with itx  when 
there are feedback effects from lagged values of ity  onto the regressors, itx . This correlation 
in turn introduces a bias that will not vanish as the sample size increase and therefore the CS-
DL estimation of the long-run effects is consistent only in the case when the feedback effects 
(or reverse causality) are not present. The second drawback is that the small sample 
performance is very good only when the eigenvalues of  L  are not close to the unit circle. 
We will provide small sample evidence on the two approaches by means of Monte Carlo 
experiments in Section 4. 

3. Cross Section Augmented Distributed Lag (CS-DL) Approach to Estimation of Mean 
Long-Run Coefficients 
3.1  The ARDL panel data model 
Suppose ity  is generated according to the panel ARDL data model (6) with 1=yip  and 

0=xip ,  

,= 1, itt
'
iit

'
itiiit yy   fγxβ          (10) 

for Ni 1,2,...,=  and Tt 1,2,...,= . To allow for correlation between the m  unobserved 
factors, ,tf  and the k  observed regressors, itx , suppose that the latter is generated according 
to the following canonical factor model  

,= itt
'
iit vfΓx            (11) 

for Ni 1,2,...,=  and Tt 1,2,...,= , where iΓ  is km   matrix of factor loadings, and itv  are 
the idiosyncratic components of itx  which are assumed to be distributed independently of the 
idiosyncratic errors, it . The panel data model (10) and (11) is identical to the model 
considered by Pesaran2006b with the exception that the lagged dependent variable is 
included in (10). We have also omitted observed common effects and deterministics (such as 
intercepts and time trends) from (10) to simplify the exposition. Introducing these terms and 
additional lags of the dependent variable and regressors is relatively straightforward. 

We are interested in the estimation of the mean long-run coefficients  iE θθ = , where iθ , 
Ni 1,2,...,=  are the cross section specific long-run coefficients defined by (8), which for 

1=yip  and 0=xip  reduces to 

.
1

=
i

i
i 

βθ           (12) 

We postulate the following assumptions. 

Assumption 1 (Individual Specific Errors) Individual specific errors it  and 'jt
v  are 

independently distributed for all tji ,,  and 't . it  follows a linear stationary process with 
absolute summable autocovariances (uniformly in i ), 

,= ,
0=








 tiiit            (13) 

for Ni 1,2,...,= , where the vector of innovations  'Ntttt  ,...,,= 21ζ  is spatially correlated 
according to  
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,= tt Rςζ  

in which the elements of tς  are independently and identically distributed (IID) with mean 
zero, unit variance and finite fourth-order cumulants and the matrix R  has bounded row and 
column matrix norms, namely K<


R  and K<

1
R . In particular,  

  ,<== 222

0=




KVar iiiit   


       (14) 

for Ni 1,2,...,= , where  iti Var  =2 . itv  follows a linear stationary process with absolute 
summable autocovariances uniformly in i , 

,= ,
0=








 tiiit νSv          (15) 

for Ni 1,2,...,= , where itν  is 1k  vector of IID random variables, with mean zero, variance 
matrix kI  and finite fourth-order cumulants. In particular,  

  ,<==
0=




KVar i
'
iiit ΣSSv 



       (16) 

for Ni 1,2,...,= , where A  is the spectral norm of the matrix A .  

Assumption 2 (Common Effects) The 1m  vector of unobserved common factors, 
 mtttt fff ,...,,= 21f , is covariance stationary with absolute summable autocovariances, 

distributed independently of 'it
  and 'it

v  for all ti,  and 't . Fourth moments of tf , for 

m1,2,...,= , are bounded.  

Assumption 3 (Factor Loadings) Factor loadings iγ , and iΓ  are independently and 
identically distributed across i , and of the common factors tf , for all i  and t , with fixed 
mean γ  and Γ , respectively, and bounded second moments. In particular, 

  ,1,2,...,=for,,,=
1

NiIID
miii  Ω0ηηγγ


 :  

and 

      ,1,2,...,=for,,,=
1

NiIIDvecvec
kmiii  Ω0ηηΓΓ :  

where Ω  and Ω  are mm  and mkmk   symmetric nonnegative definite matrices, 

K<γ , K<Ω , K<Γ , and K<Ω .  

Assumption 4  (Coefficients) The level coefficients iθ , defined in (12), follow the random 
coefficient model 

  ,1,2,...,=for,,,=
1

NiIID
kiii Ω0υυθθ


 :       (17) 

where K<θ , K<Ω , Ω  is kk   symmetric nonnegative definite matrix, and the 
random deviations iυ  are independently distributed of jγ , jΓ , jt , jtv , and tf  for all i , j , 
and t . The coefficients i  are distributed with a support strictly inside the unit circle.  
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The polynomial Li1  is invertible under Assumption 4, and multiplying (10) by   11  Li  
we obtain 

      itit
'
iiit

'
iiit LLLy  111 111=   fγxβ  

  ,1,2,...,=for,~~= NiL itit
'
iit

'
iiti  fγxαxθ      (18) 

where 1,=  tiitit xxx ,     ,1= 11
0=




LL iiii βα 

     tiit L ff 11=~   and   itiit L  11=~ 

. The distributed lag specification in (18) does not include lagged values of the dependent 
variable, and as a result the CCE estimation procedure can be applied to (18) directly. The 
level regression of ity  on itx  is estimated by augmenting the individual regressions by 
differences of unit specific regressors itx  and their lags, in addition to the augmentation by 
the cross section averages that take care of the effects of unobserved common factors. 

Let  'Nwww ,...,,= 21w  be an 1N  vector of weights that satisfies the following `granularity' 
conditions 

,= 2
1








 
NOw          (19) 

,nuniformlyi= 2
1

iNOwi







 

w
        (20) 

and the normalization condition  

.1=
1=

i

N

i
w           (21) 

Define the cross section averages   iti
N

i

''
wtwtwt wy zxz  1=

=,= , and consider augmenting the 

regressions of ity  on itx  and the current and lagged values of itx , with the following set of 

cross section averages,  p
twwtNpt 0=,=

 xzS . Cross section averages approximate the 
unobserved common factors arbitrarily well if 

  ,= 0ff
p

NptttfNp E  S         (22) 

uniformly in t , as N  and 
j

p . Sufficient conditions for result (22) to hold are given by 
Assumptions 1-4 and if the rank condition   mrank =Γ  holds. Different sets of cross section 
averages could also be considered. For example, if the set of cross section averages is defined 
as   zp

wttzNp 0==
zS , then the sufficient condition for (22) to hold under Assumption 1-4 

would be the usual rank condition   mrank =C , where  ΓγC ,= . Using covariates to 
enlarge the set of cross section averages could also be considered, as in ChudikPesaran2013a. 
Theses rank conditions can be relaxed in the case iγ  and iΓ  are independently distributed.7 
In this case the asymptotic variance of the CCE estimators does depend on the rank condition, 
nevertheless the CS-DL estimators are consistent and the proposed non-parametric estimators 

                                                        
7Correlation of iγ  and iΓ  could introduce a bias in the rank deficient case, as noted by SarafidisWansbeek2012. 
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of the covariance matrix of the CS-DL estimators given below are also valid regardless of 
whether the rank condition holds. 
Let us also introduce the following notations, which will prove useful for setting up of the 
proposed estimators. Let  'Tipipii yyy ,2,1, ,,= ...,y  ,  'Tipipii ,2,1, ,,= x...,xxX  , 

 'Twpwpww ,2,1, ,...,,= zzzZ  ,  

 
,=

1,1,

31,2,

2,1,



































'

pTi
'

Ti
'
iT

'
i

'
pi

'
pi

'
i

'
pi

'
pi

pkpT
ip

xxx

xxx
xxx

X









 

ipi
N

iwp w XX   1=
= ,  ipwpwwi XXZQ  ,,= , and the define the projection matrix  

  ,= '
wiwi

'
wiwipTqi QQQQIM 

         (23) 

for Ni 1,2,...,= , where  Tpp =  is a chosen non-decreasing truncation lag function such 
that Tp <0  , and A  is the Moore-Penrose pseudoinverse of the matrix A . We use the 
Moore-Penrose pseudoinverse as opposed to standard inverse in (23) because the column 
vectors of wiQ  could be asymptotically (as N ) linearly dependent. 

The CS-DL mean group estimator of the mean long-run coefficients is given by 

,1=
1=

i

N

i
MG

N
��
θθ           (24) 

where 

  .=
1

iqi
'
i

'
iqi

'
ii yMXXMXθ �

        (25) 

The CS-DL pooled estimator of the mean long-run coefficients is 

.=
1=

1

1=
iqi

'
ii

N

i
iqi

'
ii

N

i
P ww yMXXMXθ 










�
       (26) 

Estimators MG
�
θ  and P

�
θ  differ from the mean group and pooled CCE estimator developed in 

Pesaran2006b, which only allows for the inclusion of a fixed number of regressors, whilst the 
CS-DL type estimators include Tp lags of itx  and their cross section averages, where Tp  
increases with T , albeit at a slower rate. 

In addition to Assumptions 1-4 above, we shall also require the following assumption to hold. 

Assumption 5 below ensures that MG
�
θ  and P

�
θ  and their asymptotic distributions are well 

defined. 

Assumption 5  

1.  The matrix 
  ΨΣ =lim 1=,, ii

N

i
j

pTN w  exists and is nonsingular, and K
ipi <sup 1

,
Σ , where 

ihi
'
ii Tp XMXΣ 1lim=  , and hiM  is defined in (8.3). 
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2.  Denote the t -th row of matrix ihii XMX =
�

 by 













ikttiti

'

it xxx
����

,....,,= 21x . The individual 

elements of it
�
x  have uniformly bounded fourth moments, namely there exists a positive 

constant <K  such that ,<
4

KxE ist












 �
 for any ,1,2,...,= Tt  Ni 1,2,...,=  and ks 1,2,...,= . 

3.  There exists 0T  such that for all ,0TT     1

1=
/



 Tw iqi
'
ii

N

i
XMX  exists. 

4.  There exists 0N , 0T  and )(= 00 Tpp  such that for all 0NN  , 0TT   and )()( 0TpTp  , 

the kk   matrices   1
/

Tiqi
'
i XMX  exist for all i , uniformly.  

Our main findings are summarized in the following theorems. 

Theorem 1 (Asymptotic distribution of $_MG$) Suppose ity , for Ni 1,2,...,=  and 
Tt 1,2,...,=  is given by the panel data model (10)-(11), Assumptions 1-5 hold, and 

  
j

TpTN )(,,  such that 0,)( pTpN   for any constant 1<<0   and ùTTp /)( 3 , 
<<0 ù . Then, if   mrank =Γ  we have 

 ,0, Ωθθ NN
d

MG 















�
        (27) 

where  iVar θΩ =  and MG
�
θ  is given by (24). If   mrank Γ  and iγ  is independently 

distributed of iΓ , we have  

 ,0, MG

d

MG NN Σθθ 















�
        (28) 

where  

,1
lim= 11

1=, 






 


 i

'
ififi

N

iNp
MG N

ΣQΩQΣΩΣ        (29) 

in which  iVar γΩ = , ihi
'
iTi Tp XMXΣ 1lim= 

  and FMXQ hi
'
iTif Tp 1lim= 

 . In both 

cases, the asymptotic variance of MG
�
θ  can be consistently estimated nonparametrically by  

.
1

1=
1=

'

MGiMGi

N

i
MG

N 





























 
�����
θθθθΣ       (30) 

Theorem 2 (Asymptotic distribution of $_P$) Suppose ity , for Ni 1,2,...,=  and 
Tt 1,2,...,=  are generated by the panel data model (10)-(11), Assumptions 1-5 hold, and 

  ,)(,, 
j

TpTN  such that 0,)( pTpN   for any constant 1<<0   and ùTTp /)( 3 , 
<<0 ù . Then, if iγ  is independently distributed of iΓ , we have 
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 ,,
1/2

2

1=
P

d

Pi

N

i
Nw Σ0θθ 


























�

       (31) 

where P
�
θ  is given by (26),  

,lim=,=
1=

11
ii

N

iN
P wΣΨΨRΨΣ 



        (32) 

,1
lim=,1

lim=,=
2

1=

2

1=

'
ififi

N

iN
iii

N

iN
w

N
w

N
QΩQRΣΩΣRRRR 

��








   

 iVar θΩ = ,  iVar γΩ = , ihi
'
ii Tp XMXΣ 1lim=  , FMXQ hi

'
iif Tp 1lim=  , and 

  1/2
2

1=
=



 i
N

iii wwNw
�

. If   ,= mrank Γ  then iγ  is no longer required to be independently 

distributed of iΓ  and (31) continues to hold with 11=  ΨRΨΣ P . In both cases, PΣ  can be 

consistently estimated by PΣ̂  defined by equation (8.25) in the Appendix.  

Theorems 1-2 establish asymptotic distribution of MG
�
θ  and P

�
θ  under slope heterogeneity. 

These theorems distinguish between cases where the rank condition that ensures (22) is 
satisfied or not. In the former case, unobserved common factors can be approximated by 
cross section averages when N  is large and regardless of whether iγ  is correlated with iΓ , 

MG
�
θ  and P

�
θ  are consistent and asymptotically normal. In the latter case, where the 

unobserved common factors cannot be approximated by cross section averages when N  is 

large, then so long as iγ  and iΓ  are independently distributed, both MG
�
θ  and P

�
θ  continue to 

be consistent and asymptotically normal, but the asymptotic variance depends also on 
unobserved common factors and their loadings. In both (full rank or rank deficient) cases, the 
asymptotic variance of the CS-DL estimators can be estimated consistently using the same 
non-parametric formulae as in the full rank case. 

There are several departures from the assumptions of these theorems that might be of interest 
in applied work, such as the consequences of breaks in the error processes, it , possibility of 
unit roots in factors and/or regressor specific components, and situations where some or all 
coefficients are homogeneous over the cross-section units. These theoretical extensions are 
outside the scope of the present paper but we investigate the robustness of the proposed CS-
DL estimator to such departures by means of Monte Carlo simulations in the next section. 

4.  Monte Carlo Experiments 
This section investigates small sample properties of the CS-DL estimators and compare them 
with the estimates obtained from the panel ARDL approach using the dynamic CCEMG 
estimator of the short-run coefficients advanced in ChudikPesaran2013a, which we denote by 
CS-ARDL. First, we present results from the baseline experiments with heterogeneous slopes 
(long- and short-run coefficients), and then we document small sample performance of the 
alternative estimators under various deviations from the baseline experiments, including 
robustness of the estimators to the introduction of unit roots in the regressors or factors, 
possible breaks in the idiosyncratic error processes, and the consequences of feedback effects 
from lagged values of ity  onto itx . Second, we investigate whether it is possible to improve 



 

 15

on the estimation of short-run coefficients, provided the model is correctly specified, by 
imposing CS-DL estimates of the long-run coefficients. 
We start with a brief summary of the estimation methods and a description of the data 
generating processes. Then we present findings on the estimation of mean long-run 
coefficient and on the extent to which estimates of the short-run coefficients can be improved 
by using the CS-DL estimators of the long-run effects. 
4.1  Estimation methods 
The CS-DL estimators are based on the following auxiliary regressions: 

,= ,
0=

,
0=

,

1

0=
itt

'
ix

xp

tiy

yp

tii

p

it
'
iyiit eyxcy  



 








xωxθ      (33) 

where it
N

it N xx 
1=

1= , it
N

it yNy 
1=

1= , xp  is set equal to the integer part of 1/3T , denoted as 

 1/3T , xpp =  and yp  is set to 0 . We consider both CS-DL mean group and pooled 
estimators based on (33). 

The CS-ARDL estimator is based on the following regressions: 

,=
0=

,
0=

,
1=




   itt
'
i

zp

ti
'
i

xp

tii

yp

yiit eycy 








zψxβ      (34) 

where  ''
ttt y xz ,= ,  1/3= Tpz  and two options for the remaining lag orders are considered: 

ARDL(2,1) specification, 2=yp  and 1=xp , and ARDL(1,0) specification, 1=yp  and 
0=xp . The CS-ARDL estimates of individual mean level coefficient are then given by 

,
ˆ1

ˆ
=ˆ

1=

0=
,







i

yp

i

xp

iARDLCS








β
θ          (35) 

where the estimates of short run coefficients ( i̂ , iβ̂ ) are based on (34). The mean long-run 

effects are estimated as iARDLCS
N

i
N ,1=

1 ˆ


  θ  and the inference is based on the usual non-
parametric estimator of asymptotic variance of the mean group estimator. 
4.2  Data generating process 
The dependent variable and regressors are generated from the following ARDL(2,1) panel 
data model with factor error structure, 

,=,= 1,102,21,1 itt
'
iitittiiititiitiiyiit uuxxyycy    fγ    (36) 

and 

.= 1, itt
'
xitiyixiit vycx   fγ         (37) 

We generate itity x,  for Ni 1,2,...,= , and Tt ,2,...,99,...,0,1=   with the starting values 
0,== 100,101,  ii yy  and the first 100 time observations ( 48,...,099,= t ) are discarded to 

reduce the effects of the initial values on the outcomes. The fixed effects are generated as 



 

 16

 1,1IIDNciy : , and ixcyixi cc = , where  0,1IIDNixc : , thus allowing for dependence 

between itx  and yic . 

We consider three cases depending on the heterogeneity/homogeneity of the slopes: 

 (heterogeneous slopes - baseline)   iii   ù1=1 , iii  ù=2 ,  0.2,0.3IIDUi :ù , 

 max0, IIDUi : . The long-run coefficients are generated as  21,0.2IIDNi :  and 
the regression coefficient are generated as iii  ù=0 ,   iii   ù1=1 , where 

 211/= iiii    and  0,1IIDUi :ù . 

 (homogeneous long-run, heterogenous short-run slopes) 1=i  for all i  and the 
remaining coefficients  1021 ,,, iiii   are generated as in the previous fully 
heterogeneous case. 

 (homogeneous long- and short-run slopes) /21.15= max1 i , /20.15= max2  i , 1=i , 
and  /210.5/== max10  ii .  

We also consider the case of ARDL(1,0) panel model by setting 0=iù  and 1=iù  for all i , 
which gives 0== 12 ii   for all i . We consider three values for 0.6=max , 0.8  or 0.9 . 

The unobserved common factors in tf  and the unit-specific components, ,itv  are generated as 
independent AR(1) processes: 

 ,0,,= 2
1,  fftfttft IIDNff  :       (38) 

 ,0,,= 2
1, ixitittixiit IIDNvv  :        (39) 

for Ni 1,2,...,= , m1,2,..,= , and for Tt ,2,...,99,...,0,1=   with the starting values 
0=100,f , and 0=100,iv . The first 100 time observations ( 48,...,099,= t ) are discarded. 

We consider three possibilities for the AR(1) coefficients f  and xi : 

 (stationary baseline)  0.0.95IIDUxi : , 22 1= xii    for all i ; 0.6=f , and 
22 1=  ff    for m1,2,...,= . 

 (nonstationary factors)  0.0.95IIDUxi : , 22 1= xii    for all i ; and 1=f , 
22 0.1=f  for m1,2,...,= . 

 (nonstationary regressors and stationary factors) 1=xi , 22 0.1=i  for all i ; and 
0.6=f , 22 1=  ff   , for m1,2,...,= .  

We consider also two options for the feedback coefficients yi : no feedback effects, 0=yi  
for all i , and with feedback effects,  0,0.2IIDUyi : . 

Factor loadings are generated as 

   ,,0.2and,0.2 22
 xxii IIDNIIDN  ::  

for ,1,2,..,= m  and Ni 1,2,...,= . Also, without loss of generality, the means of factor 
loadings are calibrated so that   1==)( t

'
xit

'
i VarVar fγfγ  in the stationary case. We set 
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 b= , and xx b = , for m1,2,...,= , where ,0.21/= 2mb  and 

     20.212/12/=  mmmbx . This ensures that the contribution of the unobserved factors 
to the variance of ity  does not rise with m  in the stationary case. We consider 2=m  or 3  
unobserved common factors. 

Finally, the idiosyncratic errors, it , are generated to be heteroskedastic, weakly cross-
sectionally dependent and serially correlated. Specifically, 

,= 1, ittiiit             (40) 

where '
Ntttt ),...,,(= 21 ζ  are generated using the following spatial autoregressive model 

(SAR), 

,= ttt a ςζSζ           (41) 

in which the elements of tς  are drawn as  



  22 1

2
10, iiIIDN  , with 2

i  obtained as 

independent draws from (2)2  distribution,  

,
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and the spatial autoregressive parameter is set to 0.6=a . Note that  it  is cross-sectionally 
weakly dependent for 1<a . We consider 0=i  for all i  or  0,0.8IIDUi : . We also 
consider the possibility of breaks in it  by generating for each i  random break points 

 Tbi 1,2,..  and  

iitti
a
iit bt 1,2,...,=for,= 1,     

,2,...,1,=for,= 1, Tbbt iiitti
b
iit     

where  0,0.8, IIDUb
i

a
i :  , and '

Ntttt ),...,,(= 21 ζ  is generated using SAR model (41) 

with  



  22 1

2
10, a

iiit IIDN  : . 

The above DGP is more general than the other DGPs used in MC experiments in the 
literature and allows the factors and regressors to be correlated and persistent. The above 
DGPs also include models with unit roots, breaks in the error processes, and allows for 
correlated fixed effects. To summarize, we consider the following cases: 

1. (3 options for heterogeneity of coefficients) heterogeneous baseline, homogeneous 
long-run with heterogeneous short-run, and both long-and short-run homogeneous, 
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2. (2 options for lags) ARDL(2,1) baseline, and ARDL(1,0) model where 0=iù  and 
1=iù  for all i , which gives 0== 12 ii   for all i . 

3. (3 options for max ) 0.6=max  (baseline), 0.8 , or 0.9  

4. (3 options for the persistence of factors and regressors) stationary baseline, I(1) 
factors, or I(1) regressor specific components itv , 

5. (2 options for the number of factors) full rank case baseline 2=m , or rank deficient 
case 3=m , 

6. (3 options for the persistence of idiosyncratic errors) serially uncorrelated baseline 
0=i ,  0,0.8IIDUi : , or breaks in the error process. 

7. (2 options for feedback effects) 0=yi  for all i  (baseline), or  0,0.2IIDUyi : .  

Due to the large number of possible cases (648 in total), we only consider baseline 
experiments and various departures from the baseline. We consider the following 
combinations of sample sizes:  150,20030,50,100,, TN , and set the number of replications 
to 2,000=R , in the case of all experiments. 

4.3  Monte Carlo findings on the estimation of mean long-run coefficients 
The results for the baseline DGP are summarized in Table 0. This table shows good 
performance of the CS-DL estimators in the baseline experiments. This table also shows 
problems with the CS-ARDL approach when T  is not large (<100) due to the small sample 
problems arising when  i

yp ̂
1=  is close to unity. Also, CS-ARDL estimates based on 

misspecified lags orders are inconsistent, as to be expected. 
Next, we investigate robustness of the results to different assumptions regarding slope 
heterogeneity. Table 1 presents findings for the experiment that depart from the baseline DGP 
by assuming homogeneous long-run slopes, while allowing the short-run slopes to be 
heterogeneous. Table 2 gives the results when both long- and short-run slopes are 
homogeneous. These results show that the CS-DL estimators continue to have good size and 
power properties in all cases. 
Experiments based on the ARDL(1,0) specification (as the DGP) are summarized in Table 3. 
CS-DL estimators continue to perform well, showing their robustness to the underlying 
ARDL specification. 

The effects of increasing the value of max on the properties of the various estimators are 
summarized in Tables 4 (for 0.8=max ) and 5 (for 0.9=max ). Small sample performance of 
the CS-DL estimators deteriorates as max  moves closer to unity, as to be expected. Tables 4-
5 show that the performance deteriorates substantially for values of max  close to unity, due 
to the bias that results from the truncation of lags for the first differences of regressors. It can 
take a large lag order for the truncation bias to be negligible when the largest eigenvalue of 
the dynamic specification (given by the lags of the dependent variable) is close to one. We 
see quite a substantial bias when 0.9=max . Therefore, it is important that the CS-DL 
approach is used when the speed of convergence towards equilibrium is not too slow and/or 
T  is sufficiently large so that biases arising from the approximation of dynamics by 
distributed lag functions can be controlled. 
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The robustness of the results to the number of unobserved factors ( m ) is investigated in 
Table 6. This table provides a summary in the case of 3=m  factors, which represents the 
rank deficient case. It is interesting to note that despite the failure of the rank condition, the 
CS-DL estimators continue to perform well (the results are almost unchanged as compared 
with those in Table 1), while the CS-ARDL estimates are affected by two types of biases (the 
time series bias and the bias due to rank deficiency) that operate in opposite directions. 

Consider now the robustness of the results to the presence of unit roots in the unobserved 
factors (Table 7) or in the regressors (Table 8). As can be seen the CS-DL estimators 
continue to perform well when factors contain unit roots. Table 8, on the other hand, shows 
large RMSE and low power for 30=T  and 50 , when the idiosyncratic errors have unit roots. 
But, interestingly enough, the reported size is correct and biases are very small for all sample 
sizes. 
The results in Table 9 consider the robustness of the CS-DL estimators to the problem of 
serial correlation in the errors, whilst those in Table 10 consider the robustness of these 
estimators to the breaks in the error processes. As can be seen, and as predicted by the theory, 
the CS-DL estimators are robust to both of these departures from the baseline scenario, 
whereas the CS-ARDL approach is not. Recall, that CS-ARDL approach requires that the lag 
orders are correctly specified, and does not allow for residual serial correlation and/or breaks 
in the error processes, whilst CS-DL does. 

Last but not least, the consequences of feedback effects from ity  to the regressors, itx , is 
documented in Table 11. This table shows that the CS-ARDL approach is consistent 
regardless of the feedback effects, provided that the lag orders are correctly specified, again 
as predicted by the theory. But a satisfactory performance (in terms of bias and size of the 
test) for the CS-ARDL approach requires T  to be sufficiently large. On the other hand, in the 
presence of feedbacks, the CS-DL estimators are inconsistent and show positive bias even for 
T  sufficiently large. But the bias due to feedback effects seem to be quite small; between -
0.02 and 0.06, and the CS-DL estimators tend to outperform the CS-ARDL estimators when 

100<T . 

Given the above MC results, and considering that output growth is only moderately 
persistent8, and given that the time dimension is 45 years, the CS-DL estimates are likely to 
provide a valuable complement to the ARDL estimates in our empirical investigation below. 
4.4  Monte Carlo findings on the improvement in estimation of short-run coefficients 
As a final exercise, we consider if it is possible to improve on the estimation of short-run 
coefficients by imposing the CS-DL estimates of the long-run, before estimating the short-run 
coefficients. We consider the experiment that departs from the baseline model by assuming a 
homogeneous long-run coefficient, whilst all the short-run slopes are heterogeneous, and use 
the ARDL(1,0) as the data generating process. More specifically, we impose the CS-DL 
pooled estimator of the long-run coefficient, P̂ , when estimating the short-run coefficients 
using the CS-ARDL approach. In particular, we estimate the following unit-specific 
regressions, 

  ,ˆ=
0=

1,



   itt

'
i

zp

itPtiiyiit xycy  


zδ       (42) 

for Ni 1,2,...,= , and the resulting mean group estimator of    ii EE  1=1  is denoted by 

                                                        
8In our empirical application the first order autoregressive coefficient of output growth ranges from 0.53  (Morocco) to 0.65  (Japan), 

with mean and median of 0.274  and 0.273 , respectively. 
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where i
~  is the least square estimate of i  based on (42). The results of these experiments are 

summarized in Table 12. Imposing the CS-DL pooled estimator of the long-run coefficient 
improves the small sample properties of the short-run estimates substantially, about 80-90% 
reduction of the difference between the RMSE of the infeasible CS-ARDL estimator and the 
RMSE of the unconstrained estimator when 30=T . 

We are now in a position to apply the various estimation techniques discussed in this paper to 
our central empirical question of interest, namely the relationship between inflation, debt to 
GDP and output growth across a panel of developed and emerging economies. But first we 
provide an overview of the literature so that our empirical results can be placed within the 
extant literature. 

5  Effects of Inflation and Debt on Economic Growth: A Literature Review  
5.1  Debt and growth 
Economic theory provides mixed results on the relationship between public debt and growth.   
Elmendorf1999 argue that profligate debt-generating fiscal policy (and high public debt) can 
have a negative impact on long-term growth by crowding out private investment, although it 
is argued that this effect is quantitatively small. The negative growth effect of public debt 
could be larger in the presence of policy uncertainty or expectations of future confiscation 
(possibly through inflation and financial repression). See, for example,   Cochrane2011b and   
Cochrane2011a. Contrary to this view,   DeLong2012 argue that hysteresis arising from 
recessions can lead to a situation in which expansionary fiscal policies may have positive 
effect on long-run growth.   Krugman1988 argues that nonlinearities and threshold effects can 
arise from the presence of external debt overhang, but it is not clear whether such an 
argument is applicable to advanced economies where the majority of debt-holders are 
residents. Nonlinearities may also arise if there is a turning point above which public debt 
suddenly becomes unsustainable - see   Ghosh2013. 

Overall, the predictions of the theoretical literature on the long-run effects of public debt on 
output growth are ambiguous, predicting negative as well as a positive effect under certain 
conditions. Even if we rely on theoretical models that predict a negative relationship between 
output growth and debt, we still need to estimate the magnitude of such effects empirically. 
The empirical evidence on the relationship between debt and growth until recently focussed 
on the role of external debt in developing countries, and so far there has been only a few 
studies that include evidence on the developed economies. One such study is by   
Reinhart2010 who argue for a non-linear relationship between debt and growth. Using a 
sample of 20 advanced economies over the period 1946-2009, they split these countries into 
four groups: (i) country-years for which public debt to GDP levels were below 30 percent 
(low debt); (ii) country-years for which public debt to GDP levels were between 30 and 60 
percent (medium debt); (iii) country-years for which public debt to GDP levels were between 
60 and 90 percent (high debt); and (iv) country-years for which public debt to GDP levels 
were above 90 percent (very high). They calculate the median and average GDP growth rates 
for each group and show that there is generally a weak relationship between government debt 
and economic growth for countries with public debt levels below 90% of GDP. However, for 
countries with debt-to-GDP ratio over this threshold, they find that debt can have adverse 
effects on growth. They show that in the high-debt group, median growth is approximately 
one percentage point lower and average growth is nearly four percentage points lower as 
compared to the other groups. They also perform a similar exercise for 24 emerging 
economies over the periods 1946-2009 and 1900-2009. 
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The analysis of Reinhart and Rogoff (RR) has generated a considerable degree of debate in 
the literature. See, for example,   Kumar2010,   Checherita2012,   Eberhardt2013, and   
Reinhart2012; who discuss the choice of debt brackets used, changes in country coverage, 
data frequency; econometric specification, and reverse causality going from output to debt. 
See also   Panizza2013 for a survey and additional references to the literature. 

  Kumar2010 study the impact of high public debt on subsequent growth of real per capita 
GDP for a panel of 38 advanced and emerging market economies over the period 1970--
2007. They apply a variety of homogeneous estimation methodologies, such as pooled OLS, 
fixed effects (FE) panel regression, and system GMM approach (to account for endogeneity 
of growth regressors), and consider a variety of possible covariates of debt and growth. They 
complement their analysis by a growth accounting framework which allows for an 
exploration of the channels (factor accumulation versus factor productivity) through which 
public debt may influence growth.   Checherita2012 employ an alternative strategy to deal 
with simultaneous determination of public debt and growth (by using external instruments). 
They restrict their sample to 12 euro area countries over the period 1970-2008 and instrument 
the debt-to-GDP ratio of a typical country at each point in time with the average debt-to-GDP 
ratio of the other 11 countries in the sample during the same time period. With this strategy, 
the authors find a non-linear relationship between debt and growth with a threshold ranging 
between 90 and 100 percent of debt to GDP levels. They use fixed-effects, 2SLS and GMM 
techniques for estimation and employ a quadratic functional form for the growth-debt 
regression equation. They also analyze the channels through which public debt is likely to 
affect economic growth. 
The above studies address a number of important modelling issues not considered by 
Reinhart and Rogoff, but they nevertheless employ panel data models that impose slope 
homogeneity and do not adequately allow for cross-sectional dependence across individual 
country errors. It is implicitly assumed that different countries converge to their equilibrium 
at the same rate, and there are no spillover effects of debt overhang from one country to 
another. These assumptions do not seem plausible given the diverse historical and 
institutional differences that exist across countries, and the increasing degree of 
interdependence of the economies in the global economy. 
The paper which deals with some of these issues and is closest in approach to ours is by   
Eberhardt2013, which studies the debt-growth relationship in the context of a heterogeneous 
panel data model covering 105 countries over the period from 1972 to 2009. However, their 
analysis is subject to three main problems. First, they include the capital stock along with the 
level of debt as the two main variables determining the level of aggregate output. Given the 
endogeneity of these variables, the analysis of the effects of debt on output becomes 
complicated since changes in debt are likely to influence interest rates and hence investment, 
and such indirect effects of changes in debt on the capital stock must also be taken into 
account (see PesaranSmith2013 for a related discussion). Second, they assume the existence 
of long-run relations between output, capital stock and debt across all countries in their 
sample, without providing any empirical evidence to support it. Third, their analysis could be 
subject to the reverse causality problem since they only include one lagged values of the 
dependent variable and the regressors, and this might not be sufficient for the ARDL 
specification to capture the feedback effects running from output growth to debt/GDP ratio. 
5.2  Inflation and growth 
Economic theory provides mixed predictions on the effects of inflation on economic growth. 
Depending on how money is introduced into the model and the assumptions about its 
functions, inflation can have either positive or negative effects on real variables such as 
output and investment. Within a money-in-the-utility-function model,   Sidrauski1967 
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presents a superneutrality result where changes in the rate of money growth and inflation 
have no effects on steady-state capital and output. The same effect is obtained by   
Ireland1994 within a cash-in-advance model where money is needed in advance to finance 
investment expenditures and at the same time capital accumulation affects money's role in the 
payments system.   Tobin1965 regards money as a substitute for capital and shows that higher 
inflation enhances investment and causes a higher level of output.   Bayoumi1996 show that a 
positive relationship between inflation and investment can also arise if there are distortions in 
the tax system.   Stockman1981 examines the implications of a cash-in-advance constraint 
applying to investment and argues that higher inflation decreases steady-state real-money 
balances and capital stock, and hence produces a reversed Tobin effect.   Dornbusch1973 
show that the effects of inflation on real variables are ambiguous if money is introduced into 
the model through a transaction cost function. However, this ambiguity disappears when 
money is introduced as a transaction device through a shopping-time technology,   
Saving1971 and   Kimbrough1986. 
Gillman2005 surveys the theoretical literature on inflation and endogenous growth, and 
show that a broad range of models can generate a negative association between inflation and 
growth; see   Gomme1993 and   DeGregorio1993 among others. They also analyze whether 
the inflation--growth relationship is non-linear (becomes weaker as the inflation rate rises). In 
such models, the inflation rate affects growth because it changes the marginal product of 
capital, either that of physical capital (AK models), or that of human capital (AH models), or 
that of both in combined capital models. Considering AK and AH models, inflation acts as a 
tax on physical or human capital which decreases the marginal product of capital and lowers 
growth. The non-linearity property of the inflation-growth relationship can be explained 
through models that explicitly account for unemployment; see   Akerlof2000. According to 
these models, low inflation favors both employment and productivity, resulting in higher 
capacity utilization, a lower output gap and, as a consequence, higher growth. Therefore, the 
relationship between inflation and output growth may be positive for low levels of the 
inflation rate. 
There also exists a large empirical literature on the relationship between inflation and growth. 
A brief summary of these empirical findings is as follows. First, inflation could reduce 
growth by lowering investment and productivity.   Barro2001 provides evidence for a 
strongly significant negative effect of inflation on growth.   Bruno1998 show that the 
inflation-growth correlation is present only when they base their cross-section regressions on 
annual observations, with the correlation weakening as longer term time averages are used. 
There is also a strong inflation-growth relation with pooled annual data. Third, the 
relationship between inflation and growth is highly non-linear.   Khan2001 find a `threshold' 
rate of inflation, above which the effect is strongly significant and negative, but below which 
the effect is insignificant and positive.   Gylfason2001a list some 17 studies for which all but 
one find a significant decrease in the growth rate from increasing the inflation rate from 5 to 
50%; while   Chari1996 review the empirical results from increasing the inflation rate from 
10 to 20%, and report a significant fall in the growth rate within the interval, 0.2% to 0.7%.   
Roubini1992 study the relationship between inflation and growth in a panel of 98 countries 
over 1960-1985 and find that an increase in the annual rate of inflation from 5 to 50 percent 
reduces per capita growth, ceteris paribus, by 2.2 percent per annum.   Rousseau2001 report 
a smaller but still significant negative effect of inflation on growth in their panel study of 84 
countries during 1960-1995. The negative and highly non-linear inflation--growth effect is 
also supported in   Judson1999,   Ghosh1998, and   Lopez2011. Forth, inflation volatility is 
found to negatively affect production decisions, and hence growth; see   Judson1999. 
The inflation-growth relationship is not robust though, due to the sample selection bias, 
temporal aggregation, and omission of consequential variables in levels. Trying to address 
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these misspecifications,   Ericsson2001, using 40 years of data (1953-1992), show that output 
and inflation are positively related. They find that, for most G-7 countries, annual time series 
of inflation and the log-level of output are cointegrated, thus rejecting the existence of a long-
run relation between output growth and inflation. Following a different econometric 
approach,   Bullard1995, using a large sample of postwar countries, find that a permanent 
shock to inflation is not associated with a long-run change in real output for high inflation 
economies. Using instrumental variables to account for inflation--growth endogeneity bias,   
Gillman2004b show that the negative non-linear effect is reinstated at all positive inflation 
levels for both developed and developing countries. 

6.  Empirical Results 
In this section, we examine the long-term effects of debt and inflation on economic growth 
using both ARDL and DL specifications. We also look at the effects of debt thresholds and 
its trajectory on long-run growth. But first we begin with a description of the data used. 
6.1  Data sources 
The inflation and output growth are calculated based on consumer price index (CPI) and real 
gross domestic product (GDP) data series obtained from the International Monetary Fund 
International Financial Statistics database, except for the CPI data for Brazil, China and 
Tunisia which are obtained from the International Monetary Fund, World Economic Outlook 
database, and the CPI data for the UK, which is obtained from the   Reinhart2010 Growth in 
a Time of Debt database. 
The gross government debt/GDP data series are from   Reinhart2011 which are updated and 
made available online (http://www.carmenreinhart.com/data/browse-by-topic/topics/9/), 
except for Iran, Morocco, Nigeria, and Syria for which the International Monetary Fund FAD 
Historical Public Debt database was used instead. We focus on gross debt data due to 
difficulty of collecting net debt data on a consistent basis over time and across countries. 
Moreover, we use public debt at the general government level for as many countries as 
possible (Austria, Belgium, Germany, Italy, Netherlands, New Zealand, Singapore, Spain, 
Sweden, and Tunisia), but given the lack of general public debt data for many countries, 
central government debt data is used as an alternative.9 

Since our analysis allows for slope heterogeneity across countries, we need a sufficient 
number of time periods to estimate country-specific coefficients. To this end, we include only 
countries in our sample for which we have at least 30 consecutive annual observations on 
debt, inflation and GDP. Subject to this requirement we ended up with 40 countries listed in 
Table 13. These countries cover most regions in the world and include advanced, emerging 
and developing countries. To account for error cross-sectional dependence, we need to form 
cross-section averages based on a sufficient number of units, and hence set the minimum 
cross-section dimension to 20. Overall, we ended up with an unbalanced panel covering the 
sample period 1965-2010, with 30=minT , and 20=minN  across all countries and time 
periods.10 
6.2  Estimates based on the ARDL approach not augmented by CS averages 
We first consider the long-run effects of debt and inflation on output growth using the 
traditional panel ARDL approach, in which the long-run effects are calculated from OLS 
estimates of the short-run coefficients in the following equation:  

                                                        
9The complete dataset, Matlab codes, and Stata do files needed to generate the empirical results in this paper are available from 
people.ds.cam.ac.uk/km418. 
10See Section 7 in ChudikPesaran2013s for further details on the application of the CCE estimators to unbalanced panels. 
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where ity  is the log of real GDP,  'ititit d ,= x , itd  is the log of debt to GDP ratio, and it  
is the inflation rate. In a series of papers,   Pesaran1995,   Pesaran1997, and Pesaran1999 
show that the traditional ARDL approach can be used for long-run analysis, and that the 
ARDL methodology is valid regardless of whether the regressors are exogenous, or 
endogenous, and irrespective of whether the underlying variables are  0I  or  1I . These 
features of the panel ARDL approach are appealing as reverse causality could be very 
important in our empirical application. It is well recognized that while high debt burden may 
have an adverse impact on economic growth, low GDP growth (by reducing tax revenues and 
increasing public expenditures) could also lead to high debt to GDP ratios. We are indeed 
interested in looking at the relationship between public debt, inflation and output growth after 
accounting for these possible feedback effects. Our panel ARDL specification also allows for 
a significant degree of cross-county heterogeneity and accounts for the fact that the effect of 
public debt and inflation on growth could vary across countries (particularly in the short run), 
depending on country-specific factors such as institutions, geographical location, or cultural 
heritage. 

As mentioned in Section 2 and illustrated by MC simulations in Section 4, sufficiently long 
lags are necessary for the consistency of the ARDL approach, whereas specifying longer lags 
than necessary can lead to estimates with poor small sample properties. We use the same lag 
order, p , for all variables/countries, but consider different values of p  in the range of 1 to 3. 
Given that we are working with growth rates which are only moderately persistent, a lag 
order of 3 should be sufficient to fully account for the short-run dynamics. Also, using the 
same lag order across all variables and countries help reduce the possible adverse effects of 
data mining that could accompany the use of country and variable specific lag order selection 
procedures such as Akaike or Schwarz criteria. Note that our primary focus here is on the 
long-run estimates rather than the specific dynamics that might be relevant for a particular 
country. 
The Least Squares (LS) estimates obtained from the panel ARDL specifications are reported 
for three cases, (a), (b) and (c), in Tables 14 and 15.11 Panel (a) depicts the results when only 
the debt/GDP variable is included in the ARDL model, panel (b) when only inflation is 
included, and panel (c) when both variables are included. Each panel gives the average 
estimates of the long-run effects of debt/GDP growth and inflation on GDP growth (denoted 
by d  and  ), and the mean estimate of the coefficients of the error correction term, 
denoted by  . For each lag order 1=p , 2  and 3 , we provide fixed effects (FE) estimates in 
Table 14 (assuming slope homogeneity), and Mean Group (MG) estimates in Table 15 that 
allow for slope coefficients to vary across countries. As shown in   Pesaran1995, the FE 
estimators will be inconsistent in the presence of slope heterogeneity even if T  is sufficiently 
large. In contrast the MG estimates are consistent under fairly general conditions so long as 
the errors are cross-sectionally independent. 

The results across all specifications suggest an inverse relationship between debt/GDP 
growth (inflation) and economic growth. Specifically, for case (a) Tables 14 and 15 show that 
the coefficients of debt/GDP growth are negative and always statistically significant at the 1 
percent level, with their values ranging from 0.055  to 0.075  across various estimation 

                                                        
11Individual country estimates are available on request, but it should be noted that they are likely to be individually unreliable given the fact 
that the time dimension of the panel is relatively small. 
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techniques and lag orders.12 For case (b) and when considering the FE estimates, we note that 
the negative effects of inflation on output growth is 0.025  at various lag orders, while the 
MG estimates are much larger (falling between 0.054  and 0.104 ). These estimates are 
statistically significant at the 1 percent level, with one exception. 

Focusing on case (c), where we jointly model debt/GDP growth, inflation, and output growth, 
we note that a one percentage point increase in debt-to-GDP growth is associated with a 
slowdown in GDP growth of between 0.044  and 0.083 percentage points (statistically 
significant at the 1% level), depending on the selected lag order and estimator, with the MG 
estimates being generally larger than those of the FE. On the other hand, while the long-run 
growth effects of inflation are negative (between 0.024  and 0.026 ) and significant at 1 
percent level based on the FE estimates, the MG coefficients are only significant in the case 
of 1=p , suggesting that once we control for debt/GDP and allow for longer lags ( 2=p  and 
3 ) the long-run impact of inflation on output growth is no longer evident. Overall, the results 
presented in Tables 14 and 15 are suggestive of negative relationships between debt, 
inflation, and growth. However, the estimated coefficients vary considerably with different 
lag augmentation and with/without pooling. It is also worth noting that in all cases, (a)--(c) in 
Tables 14 and 15, the speed of adjustment to long-run equilibrium is very quick and is in line 
with the relatively low persistence of output growth in the case of most countries. However, 
this does not mean that the effects of changes to debt/GDP ratio will also be very quick on the 
level of real output. 

6.3  Estimates based on the CS-ARDL approach 
The above panel ARDL methodology assumes that the errors in the debt-inflation-growth 
relationships are cross-sectionally independent, which is likely to be problematic as there are 
a number of factors such as trade and financial integration, external-debt financing of budget 
deficits, and exposures to common shocks (i.e. oil price disturbances), that could lead to 
cross-sectional error dependencies. These global factors are mostly unobserved and can 
simultaneously affect both domestic growth and public debt, and can lead to badly biased 
estimates if the unobserved common factors are indeed correlated with the regressors. 
Tables 14 and 15 report the CD (Cross-section Dependence) test of Pesaran2004 
(Pesaran2004, Pesaran2013), which is based on the average of the pair-wise correlations of 
the OLS residuals from the individual-country regressions (a-c), and which under the null of 
cross-section independence is distributed as standard normal.13 For each 1,2,=p  and 3 , we 
observe that the error terms across countries in our model exhibit a considerable degree of 
cross-sectional dependence as the reported CD statistics are highly significant with very large 
test statistics. The presence of the cross-sectional dependence implies that estimates obtained 
using standard panel ARDL models might be misleading. To overcome this problem, we 
employ the CS-ARDL approach, based on ChudikPesaran2013a, which augments the ARDL 
regressions with cross-sectional averages of the regressors, the dependant variable and a 
sufficient number of their lags, which in our case is set to 3  regardless of p , the lag order 
chosen for the underlying ARDL specification. More specifically, the cross-sectionally 
augmented ARDL regressions are given by 
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12The reported standard errors are robust to cross-sectional heteroskedasticity and residual serial correlation as in   Arellano1987. 
13Theoretical properties of the CD test have been established in the case of strictly exogenous regressors and pure autoregressive models. 
The properties of the CD test for dynamic panels that include lagged dependent variables and other (weakly or strictly exogenous) regressors 
have not yet been investigated. However, the Monte Carlo findings reported in ChudikPesaran2013s suggest that the CD test continues to be 
valid even when the panel data model contains lagged dependent variable and other regressors. 
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where  ''
ttt y xz ,=  , and all the other variables are as defined in equation (43). 

The estimation results are summarized in Table 16, where we provide MG estimates for the 
three specifications, (a), (b), and (c), discussed above. For specification (a), we note that the 
long-run estimates of the debt/GDP growth variable are somewhat larger (ranging between 

0.072  and 0.096)  than those in Table 15, but still statistically significant at the 1 percent 
level. The long-run effects of inflation on output growth are similar in most cases to those of 
the ARDL estimates, except for the CCEMG estimate with 3=p  which is not statistically 
significant. Turning to specification (c), there is now more evidence for negative growth 
effects of inflation in the long run as the estimates are significant (at the 1% level) in all cases 
but one. The long-run effects of inflation on growth lies in the range of 0.080  and 0.164 . 
These estimates are much larger than those obtained in Table 15, as the latter does not take 
into account the possibility that the unobserved common factors are correlated with the 
regressors. The CD test statistics in Table 16, confirm a substantial decline in the average 
pair-wise correlation of residuals after the cross-section augmentation of the ARDL models. 
The coefficients of debt/GDP growth under specification (c) are also larger (between 0.079  
to 0.120 ) using the CS-ARDL regressions, and all of the estimates are statistically 
significant at the 1 percent level. Finally, the speed of convergence to equilibrium is very fast 
(and in some instances faster than in the case without augmentation, see Tables 14--16). But 
as noted earlier and due to the small sample bias in the estimates of the short-run dynamics, 
the adjustment speeds reported in these tables should be viewed as indicative. 

6.4  Estimates based on the CS-DL approach 
The results in Tables 14-16 provide evidence of long-run negative effects of both debt and 
inflation on GDP growth. However, as discussed earlier in the paper, the ARDL and CS-
ARDL approaches have their own drawbacks. The sampling uncertainty could be large when 
the time dimension is moderate and the performance of the estimators also depends on a 
correct specification of the lag orders of the underlying ARDL specifications. The direct 
approach to estimating the long-run relationships proposed in this paper (the CS-DL method), 
is more generally applicable and only requires that a truncation lag order is selected. Also, as 
can be seen from Section 4, this method has better small sample performance for moderate 
values of T , which is often the case in applied work. Furthermore, it is robust to a number of 
departures from the baseline specification such as residual serial correlation, and possible 
breaks in the error processes. 
We estimate the CS-DL versions of the three specifications (a)-(c) and obtain the MG 
estimates for different truncation lag orders, 1,2,3=p . We always include three lags of the 
cross-sectional averages of the regressors in all specifications; namely, we run the following 
regressions 
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where the regressors are defined as in equation (43), with 1,2,3=p . 

The MG estimates based on the above CS-DL regressions are summarized in Table 17. 
Overall, the estimates are similar to those obtained based on panel ARDL and CS-ARDL 

regressions given in Tables 14--16. Specifically, the mean group estimates, MG
�
θ , of the 

effects of debt/GDP and inflation on economic growth are negative and statistically 
significant (in most cases at the 1% level). The estimated coefficients for the debt/GDP 
growth variable range from 0.068  to 0.087 , and those of inflation fall between 0.066  
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and 0.089 . These estimates fall in a narrow range and tend to be robust to the choice of the 
truncation lag order. The estimates indicate that, if the debt to GDP ratio is raised 
permanently, then it will negatively affect economic growth in the long run. But if the 
increase is temporary and the debt to GDP ratio is actually brought back to its normal level, 
then there are no long-run adverse effects on economic growth. 

However, one drawback of the CS-DL approach is that the estimated long-run effects are 
only consistent when the feedback effects from the lagged values of the dependent variable to 
the regressors are absent, although as we have seen in the MC section that, even with this 
bias, the performance of CS-DL in terms of RMSE is much better than that of the CS-ARDL 
approach when T  is moderate (which is the case in our empirical application). Having said 
that, it should be noted that no one estimator is perfect and each technique involves a trade-
off. Estimators that effectively address a specific econometric problem may lead to a different 
type of bias. For instance, while the CS-DL estimator is capable of dealing with many 
modeling issues (cross sectional dependences, robustness to different lag-orders, serial 
correlations in errors, and breaks in country-specific error processes), it leaves the feedback 
effects problem unresolved. To deal with different types of econometric issues, and to ensure 
more robust results, we conducted the debt-inflation-growth exercise based on a range of 
estimation methods (ARDL, CS-ARDL, and CS-DL). We note that the direction/sign of the 
long-run relationship between debt and growth is always negative and statistically significant 
(across different specification and lag orders). This is also the case for the relationship 
between inflation and growth in most of the models estimated (20 out of 24 coefficients). 
This gives one more assurance that debt and inflation have a dampening effect on long-run 
output growth, but given the different biases associated with the direct and indirect 
approaches to estimating the long-run relationship between debt, inflation and growth, we 
expect the exact magnitude of the effects to be somewhere in between the two estimates (CS-
ARDL and CS-DL). 

Given that the CS-DL approach is robust to the possibility of unit roots in variables, we also 
investigate the long-run effects of the log level of debt to GDP ratio and inflation on the log 
level of output. The results are reported in Table 18 from which we observe that a one percent 
increase in the level of debt/GDP, if sustained, reduces real output by 0.048  to 0.068  
percent. These estimates continue to be statistically highly significant in all cases, and 
suggest, for example, that if a country's debt-to-GDP rises from its normal level of say 70% 
to 90% and if this increase is maintained, then eventually the country's output might decline 
by as much as 1.7%. 

Finally, we also run regressions where inflation is replaced with the log of CPI in the 
regressions of log GDP levels and obtained very similar results for the effects of debt/GDP 
on real output. (Table 18). However, in contrast, the long-run effects of inflation (or log of 
CPI) on output growth in the level regressions turn out not to be statistically significant. 

6.5  Debt/GDP threshold effects on growth 
The above results clearly suggest that maintaining high levels of debt-to-GDP are likely to be 
unsustainable, and if persistent can lead to long-run growth stagnation. However, the 
estimates obtained so far do not provide any information regarding the normal or acceptable 
levels of debt-to-GDP. This issue has been addressed by   Reinhart2010 and   Checherita2012 
who argue for the presence of a threshold effect in the relationship between debt/GDP and 
economic growth. RR's analysis is informal and, as noted in our literature review, involves in 
comparisons of average growth rate differentials across economies classified by their average 
debt/GDP ratios. They find that these differentials peak when debt/GDP ratio is around 90-
100%.   Krugman1988 and   Ghosh2013 also consider possible threshold effects in the 
relationship between external debt and output growth, which is known as the debt overhang. 
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However, these results are based on strong homogeneity restrictions, in particular the 
assumption that there exists a universal debt/GDP threshold, applicable to all countries 
equally. It is further assumed (albeit implicitly) that all countries are similarly affected by the 
threshold effect. 
The debt overhang phenomenon in itself seems plausible. What is difficult to accept is the 
assumption that the level of debt/GDP threshold and its effects on output growth are the same 
across all countries irrespective of their degree of external debt exposure, historical 
performance in servicing their public debt, and market perceptions of their economic 
potential in meeting their debt obligations in future. Due to such intrinsic cross-country 
heterogeneities, debt thresholds are most-likely country specific and must be estimated as 
such. However, identification and estimation of country-specific debt thresholds are not 
feasible due to short time-series data that are currently available. 
To explore the importance of heterogeneity and potential nonlinearity in the debt-growth 
relationship, initially we begin with the following baseline homogeneous panel data model  

,)(= ititit eIcy           (46) 

where  itI  is a "threshold dummy", defined by the indicator variable  logitdI  which 
takes the value of 1  if debt/GDP is above the given threshold value of  , and zero otherwise. 
As before ity  is the log of real GDP, and itd  is the log of debt/GDP. In addition to assuming 
a universal threshold,  , this model also assumes that the coefficients of the "threshold 
dummy",  , is the same across all countries whose debt/GDP ratio is above the same 
threshold. c  is the average GDP growth of countries with debt/GDP below  . 

The estimates of c  and   for values of 30%,=  40%,  ...,  90%,  are given on the top 
panel of Table 19.14 The results show estimates of c  that are quite stable across different 
values of  , which is in line with the rather small estimates obtained for  . The differences 
between average GDP growth for countries above a certain debt/GDP ratio and countries 
below the same threshold level are relatively flat over a range of values for  . The estimates 
of   also show that while average GDP growth declines when the public debt/GDP ratio 
increases, one cannot find a tipping point beyond which long-term growth is reduced 
substantially. 
We now consider a less restrictive model which uses a universal threshold, but allows the 
effects of the threshold dummy to differ across countries. This is a more plausible 
specification since it allows the threshold dummy, for example, to have a zero loading for a 
country like Japan, and possibly a large negative estimate for a country like Greece or Spain. 
Specifically, we consider 

,)(= ititiiit eIcy            (47) 

and report MG estimates of c  and  , defined as averages of the estimates of ic  and  i  
across countries with a given threshold, in Table 19. The results are qualitatively similar to 
those obtained for the homogenous case, but with larger estimates for  . If anything, the 
heterogenous specification is more supportive of the Reinhart and Rogoff position, partly due 
to the fact that it does not treat all the countries similarly. 
Although specification (47) deals with heterogeneity, it does not allow for cross-country 
dependencies, dynamics, and non-threshold effects of debt/GDP growth and inflation 
                                                        
14We report heteroscedasticity-robust standard errors. 
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variables on output growth. To address these problems, we consider the following 
specification which is a generalization of our earlier set up:  
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where  'ititit d ,= x . The MG estimates of the parameters of interest,   and θ , are 
summarized in Table 19. In sharp contrast to the estimates based on (46) and (47), none of 
the estimates of   are statistically significant. We note that, as before, the long-run effects of 
debt on growth are always statistically significant and negative in the range of 0.063  and 

0.109  depending on  . Therefore, our results show that there is no simple common 
threshold for the level of government debt above which growth is more adversely affected. 

As our results have consistently shown that higher and sustained debt/GDP growth tend to 
adversely affect output growth, and having shown that the presence of simple threshold 
effects is not supported by the data, we turned to other non-linear threshold effects which 
became binding only in the case of countries with rising debt/GDP rates. Accordingly, we 
estimated the following specification,  
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which is the same as (48), except for the interactive term,  itit dI  0,max)( , which is non-
zero only if 0>itd , and )(log> itd . The MG estimates for this model are summarized in 
Table 20. The results show that when samples of country episodes with an upward debt 
trajectory above certain thresholds are chosen, the coefficients of the interactive threshold 

dummy variable (i.e. 



�

) becomes negative and statistically significant if debt/GDP ratio is 

above 60% . However, as before the coefficient of the threshold dummy ( 
�

) is not 
statistically significant. We therefore remove )(itI  and instead estimate 
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Again we observe that the coefficients of the interactive threshold dummy variable are 
negative and statistically significant beyond 60 percent debt/GDP ratio while at the same time 

the coefficient of debt growth (  ,d
�

) is significant and falls between 0.056  and 0.100 , 
which is in line with the results obtained in Tables 16-17. The results in Table 20 indicate that 
debt trajectory is probably more important than the level of debt itself. 

7. Concluding Remarks 
Estimation of the long-run effects of public debt on economic growth has received renewed 
interest among economists and policy makers in the aftermath of the global financial crisis 
and the European sovereign debt crisis. Due to a significant worsening of public finances in 
many advanced economics and more limited fiscal space in these countries (compared with 
2008), the interaction between public debt and economic growth is attracting greater 
attention. Recent sovereign debt problems in Greece and other European economies and 



 

 30

negative feedback loops between sovereigns and the banking system have also contributed to 
this renewed interest in the interplay between public debt and economic growth, and in 
general on the design of policies that balance short-run gains from fiscal expansion with 
possible adverse effects on growth in the long run. This paper revisited the question of the 
long-run effects of debt on growth empirically in a dynamic heterogeneous and cross-
sectionally correlated unbalanced panel of countries. Our findings suggest that there is a 
significant negative long-run relationship between rising debt and economic growth, and that 
the trajectory of the debt can have more important consequences for economic growth than 
the level of the debt itself, particularly beyond certain debt level thresholds. 

In particular, our results show that following episodes of increasing public debt, governments 
need to adopt fiscal measures that credibly reduce the overall debt/GDP ratio to normal levels 
in order to prevent the negative long-run growth effects of debt. This policy is compatible 
with Keynesian fiscal deficit spending, so long as it is coupled with credible fiscal policy 
announcements that aim at reducing the debt burden to levels considered as normal for the 
country in question. Our analysis does not provide any guidelines as to what might be 
considered normal levels of debt/GDP ratio, except in cases where debt/GDP ratio is high and 
rising, and there is no credible expectations of a reversal in the debt/GDP trajectory. 

Estimation of long-run effects is an important applied problem in many fields of economics. 
We have discussed how to estimate long-run effects in a typical macroeconomic panel, where 
errors are cross-sectionally dependent, slopes are heterogeneous, and dynamic effects include 
lagged values of the dependent variable. We have provided new Monte Carlo results showing 
the robustness of the estimates of the long-run effects based on panel ARDL models to the 
endogeneity problem. We have also contributed to the econometric analysis of long-run 
effects by proposing a new cross-section augmented distributed lag (CS-DL) approach which 
is robust to residual serial correlation, breaks in error processes and dynamic 
misspecifications. But unlike the ARDL approach, the CS-DL procedure is not robust to the 
endogeneity problem, and could be subject to simultaneity bias. Nevertheless, the extensive 
Monte Carlo experiments reported in the paper suggest that the endogeneity bias of the CS-
DL approach is more than compensated for its better small sample performance as compared 
to the ARDL procedure when the time dimension is not very large. ARDL seems to dominate 
CS-DL only if the time dimension is sufficiently large, which is often lacking in empirical 
applications. 
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Appendix 
Table  1: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in Baseline Experiment -  DGP is 
ARDL(2,1) model with heterogeneous coefficients, 0.6=max , stationary regressors, 2=m  factors, no feedback effects and 0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

(N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
   CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )   

 30   -0.65   -0.49   0.04   -0.11   -0.15   16.88   11.24   8.55   7.34   6.44   6.35   6.15   7.75   5.80   6.40   28.30   50.20   70.30   80.10   87.15  
50   -1.12   -1.00   -0.34   -0.12   -0.03   13.19   8.83   6.33   5.82   4.92   5.90   6.15   5.25   6.45   5.20   39.45   70.20   89.10   93.45   97.80  
100   -1.32   -0.92   -0.09   -0.11   0.15   9.66   6.25   4.49   4.03   3.56   5.95   6.30   5.55   4.50   5.45   62.95   92.45   99.50   99.75  100.00  
150   -1.19   -0.96   -0.11   0.16   -0.05   7.91   5.24   3.78   3.38   2.94   5.90   6.50   5.90   6.25   5.75   79.45   98.20   99.85  100.00  100.00  
200   -1.06   -0.75   -0.24   -0.07   0.03   6.70   4.38   3.17   2.86   2.47   5.60   6.00   4.85   5.10   4.50   88.65   99.80  100.00  100.00  100.00  
   CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  

 30   -0.40   -0.19   0.16   -0.08   -0.04   15.31   10.44   8.12   7.10   6.41   6.95   6.60   7.20   6.95   6.50   33.75   53.65   73.15   82.45   88.25  
50   -0.93   -1.00   -0.29   -0.16   -0.06   11.47   8.31   6.08   5.55   4.80   6.00   6.70   5.70   6.00   4.60   47.05   75.50   91.40   94.80   97.80  
100   -1.09   -0.83   -0.13   -0.10   0.14   8.17   5.88   4.26   3.90   3.53   5.85   6.35   5.20   4.60   5.80   74.20   95.10   99.75   99.90   99.95  
150   -1.02   -0.72   -0.09   0.11   -0.02   6.83   4.82   3.55   3.28   2.87   5.90   6.10   5.80   5.95   5.55   87.60   98.95   99.95  100.00  100.00  
200   -0.81   -0.68   -0.22   -0.06   0.03   5.89   4.11   3.04   2.74   2.43   5.25   5.70   5.20   5.15   5.05   94.55   99.95  100.00  100.00  100.00  
   Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  
 30   -10.40   -3.87   -1.73   -1.38   -0.88  361.68   20.62   7.59   6.24   5.54   10.75   9.80   9.45   8.25   7.50   39.95   66.05   86.05   94.10   96.00  
50   3.72   -3.96   -2.12   -1.30   -1.00  182.36   9.56   5.83   4.89   4.32   10.45   12.75   8.10   7.65   6.55   45.40   81.30   98.00   98.90   99.70  
100   17.57   -4.03   -2.02   -1.39   -0.83  966.97   7.31   4.34   3.58   3.16   12.90   13.90   10.05   8.45   8.05   61.30   96.40  100.00  100.00  100.00  
150   -9.46   -3.93   -2.03   -1.20   -1.07  159.90   6.46   3.84   3.03   2.68   13.65   18.45   12.05   9.45   8.95   67.60   99.50  100.00  100.00  100.00  
200   11.29   -3.97   -2.15   -1.42   -1.01  678.37   6.66   3.52   2.79   2.31   13.90   20.10   13.10   11.05   7.70   71.00   99.40  100.00  100.00  100.00  
   Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  
 30   -23.29   -26.91   -23.58   -22.66   -22.01  274.46   28.91   24.83   23.77   22.99   58.05   75.70   85.90   90.40   91.95   86.10   98.00   99.90  100.00  100.00  
50   -27.78   -27.49   -23.95   -22.72   -22.28  109.97   28.68   24.70   23.36   22.83   73.20   90.75   97.25   98.60   99.25   92.00   99.80  100.00  100.00  100.00  
100   -31.85   -27.64   -24.18   -22.94   -22.21   62.82   28.23   24.54   23.26   22.50   87.75   99.45  100.00  100.00  100.00   96.10  100.00  100.00  100.00  100.00  
150   -30.11   -27.60   -24.01   -22.82   -22.34   81.52   28.02   24.26   23.05   22.53   93.35   99.90  100.00  100.00  100.00   97.20  100.00  100.00  100.00  100.00  
200   -31.20   -27.73   -24.20   -22.96   -22.40   50.42   28.04   24.39   23.12   22.55   94.25  100.00  100.00  100.00  100.00   97.30  100.00  100.00  100.00  100.00  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 
generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 1/3T  gives 3,3,4,5  and 5  for  T = 30,50,100,150 and 200 and 200, respectively.    
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Table 2: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of Homogeneous Long-
Run:  DGP is ARDL(2,1) model with homogeneous long-run, heterogeneous short-run, 0.6=max , stationary regressors, 2=m  factors, no 
feedback effects and 0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -1.59   -0.63   0.00   -0.05   0.01   16.55   10.27   7.40   6.21   5.31   6.00   5.30   6.40   5.25   5.85   30.85   55.85   78.45   88.30   95.05  
50   -1.49   -0.95   -0.34   -0.02   -0.11   12.92   8.04   5.89   4.97   4.22   5.25   5.85   6.55   5.60   6.30   41.75   74.65   93.15   97.30   99.55  
100   -0.96   -0.55   -0.20   0.02   0.02   9.16   5.76   4.09   3.53   3.02   5.10   5.70   5.40   5.10   5.70   64.90   94.40   99.75   100.00  100.00  
150   -1.06   -0.83   -0.18   0.00   -0.10   7.63   4.94   3.35   2.88   2.41   5.45   6.50   5.45   5.35   5.35   79.55   98.70   100.00   100.00  100.00  
200   -1.10   -0.77   0.02   -0.02   -0.08   6.47   4.22   2.87   2.52   2.10   4.60   5.95   5.20   5.30   5.00   89.70   99.90   100.00   100.00  100.00  
  

 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -0.97   -0.42   -0.04   -0.08   0.04   14.33   9.31   6.81   5.83   4.92   7.00   5.55   6.75   5.50   5.95   36.45   62.00   84.30   91.90  97.00  
50   -1.01   -0.83   -0.29   -0.02   -0.09   11.07   7.38   5.40   4.59   3.91   5.90   5.20   6.20   5.30   6.85   49.75   80.45   95.50   98.15  99.75  
100   -0.72   -0.51   -0.16   0.00   0.05   7.87   5.32   3.76   3.21   2.76   5.30   5.70   5.45   5.60   5.80   76.25   96.60   99.85   100.00  100.00  
150   -0.80   -0.61   -0.14   0.05   -0.08   6.55   4.36   3.06   2.59   2.24   6.00   6.05   5.40   5.05   5.15   89.55   99.80   100.00   100.00  100.00  
200   -0.95   -0.67   0.04   -0.03   -0.07   5.49   3.83   2.59   2.29   1.91   5.00   6.35   5.10   5.60   5.25   96.15   100.00   100.00   100.00  100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  
  

 30   -0.25   -3.59   -1.80   -1.24   -0.80   284.59   10.67   6.61   5.00   4.10   10.90   9.90   10.00   8.30   7.90   41.75   72.45   92.20   98.40   99.65  
50   -8.02   -3.87   -2.03   -1.39   -1.03   85.61   8.89   5.21   4.08   3.37   10.80   11.10   9.65   9.75   8.55   50.70   85.65   99.35   99.90  100.00  
100   -3.69   -3.87   -2.17   -1.38   -0.95   154.40   6.94   4.03   3.01   2.45   12.25   14.85   12.45   10.05   9.10   62.05   97.65   100.00   100.00  100.00  
150   -0.25   -3.94   -2.11   -1.37   -1.06   90.79   6.27   3.51   2.60   2.12   14.05   18.10   14.80   12.30   11.75   67.95   99.50   100.00   100.00  100.00  
200   -1.53   -3.98   -2.06   -1.37   -1.05   320.07   5.75   3.16   2.39   1.92   15.25   22.55   16.25   14.25   12.15   71.90   99.70   100.00   100.00  100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  
  

 30  -30.79  -27.20  -23.78  -22.80  -22.12   55.20   28.90   24.89   23.63   22.85   62.55   81.15   91.10   96.25   98.30   87.00   98.90   100.00   100.00  100.00  
50  -32.12  -27.63  -24.23  -23.14  -22.57   47.11   28.66   24.88   23.66   23.00   76.85   94.25   99.05   99.75   100.00   94.25   99.90   100.00   100.00  100.00  
100  -34.77  -27.78  -24.41  -23.21  -22.57   252.97   28.33   24.72   23.46   22.79   89.85   99.60   99.95   100.00   100.00   96.65   100.00   100.00   100.00  100.00  
150  -32.53  -27.88  -24.35  -23.16  -22.62   36.50   28.27   24.56   23.33   22.76   92.55   99.90   100.00   100.00   100.00   96.90   100.00   100.00   100.00  100.00  
200  -33.96  -27.90  -24.38  -23.16  -22.63   53.98   28.17   24.54   23.28   22.75   94.35   99.85   100.00   100.00   100.00   97.05   99.95   100.00   100.00  100.00  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 
generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 1/3T  gives 3,3,4,5 and  5 for  T=30,50,100,150, and  200, respectively.    

 



 

 36

Table  3: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of Homogeneous Short-
Run. DGP is ARDL(2,1) models with homogeneous short-run, 0.6=max , stationary regressors, 2=m  factors, no feedback effects and 

0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -2.20   -1.52   -0.09   -0.34   -0.35   19.01   12.19   8.55   7.37   6.14   7.25   6.00   6.40   5.75   5.70   27.80   49.20   69.05   80.30   90.00  
50   -2.23   -1.69   -0.51   0.17   0.05   14.93   9.35   6.85   5.79   4.84   6.10   5.45   6.30   6.55   5.60   35.95   67.20   86.15   92.40   97.25  
100   -2.24   -1.84   -0.36   -0.21   0.06   10.55   6.93   4.68   4.01   3.33   6.10   7.15   5.45   5.10   4.90   59.10   89.95   98.75   99.90  100.00  
150   -1.98   -1.99   -0.47   -0.11   -0.03   8.79   5.82   3.91   3.35   2.66   6.30   7.30   6.50   5.35   4.20   75.35   98.00   99.95   100.00  100.00  
200   -2.22   -1.86   -0.35   -0.20   -0.01   7.94   4.96   3.38   2.85   2.38   6.70   6.90   5.25   4.75   4.80   84.40   99.65   100.00   100.00  100.00  
   CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )    

 30   -1.94   -1.39   -0.03   -0.35   -0.44   16.68   10.97   7.95   6.83   5.81   7.05   6.00   6.55   6.20   5.85   32.40   54.20   74.35   84.85   93.15  
50   -1.96   -1.45   -0.40   0.16   0.02   12.88   8.70   6.29   5.36   4.43   6.80   6.65   6.25   6.60   5.45   44.55   72.80   89.75   95.50   98.75  
100   -2.00   -1.66   -0.31   -0.16   0.04   9.10   6.34   4.37   3.70   3.07   6.25   6.10   6.20   5.35   5.25   70.55   93.50   99.30   99.95  100.00  
150   -1.68   -1.62   -0.43   -0.08   -0.04   7.61   5.22   3.57   3.05   2.48   6.40   7.10   6.00   4.95   4.05   84.15   99.25   100.00   100.00  100.00  
200   -1.94   -1.61   -0.31   -0.19   -0.04   6.76   4.50   3.13   2.59   2.20   6.95   6.55   5.05   3.95   4.45   92.70   99.75   100.00   100.00  100.00  
   Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).    

 30   -14.08   -3.81   -1.92   -1.59   -1.26   310.27   12.81   7.66   6.02   5.04   10.50   10.45   9.20   9.40   9.35   32.50   61.25   84.10   95.30   98.25  
50   -4.56   -4.15   -2.14   -1.35   -1.00   242.69   10.59   6.20   4.72   3.98   10.15   11.85   9.80   8.75   8.95   37.90   76.00   96.15   99.50   99.75  
100   2.62   -4.32   -2.28   -1.51   -1.11   203.52   8.24   4.61   3.48   2.88   10.70   14.15   11.60   9.35   9.25   47.05   93.10   99.85   100.00  100.00  
150   -3.39   -4.50   -2.35   -1.56   -1.12   163.77   7.29   4.09   3.03   2.43   9.90   18.25   14.30   12.10   9.25   51.30   98.35   100.00   100.00  100.00  
200   -13.55   -4.32   -2.31   -1.64   -1.18   298.99   6.58   3.71   2.77   2.22   11.40   21.30   15.50   14.05   11.80   56.00   99.45   100.00   100.00  100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  
  

 30   -14.02   -10.86   -6.61   -5.78   -5.30   53.22   15.60   9.81   8.21   7.30   24.60   25.10   22.30   22.70   23.35   58.60   82.10   94.65   98.45   99.90  
50   -15.83   -11.12   -7.07   -5.88   -5.26   67.84   14.14   9.05   7.41   6.59   30.70   34.25   30.60   31.40   33.65   71.95   93.60   99.90   99.95   10.00  
100   -8.04   -11.36   -7.41   -6.14   -5.54   407.90   12.88   8.38   6.88   6.20   41.55   53.15   51.55   52.70   56.60   83.55   99.55   100.00   100.00  100.00  
150   -15.24   -11.63   -7.51   -6.24   -5.54   43.70   12.68   8.17   6.77   5.99   50.75   68.95   68.25   70.15   72.20   88.85   100.00   100.00   100.00   

100.00  
200   -14.75   -11.53   -7.54   -6.33   -5.62   37.89   12.32   8.03   6.70   5.94   56.55   79.15   79.75   82.75   84.60   90.60   99.95   100.00   100.00   

100.00  
Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 

generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, respectively.    
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Table  4: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of ARDL(1,0) Model 
DGP is ARDL(1,0) model with heterogeneous coefficients, 0.6=max , stationary regressors, 2=m  factors, no feedback effects and 0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -2.81   -2.34   -1.01   -0.45   -0.51   16.57   10.87   7.93   7.39   6.40   7.00   6.50   5.60   6.80   6.35   34.90   59.65   77.10   82.55   88.80  
50   -2.77   -2.29   -0.96   -0.53   -0.57   13.13   8.64   6.25   5.48   5.04   7.30   6.50   6.25   5.45   6.40   47.70   77.20   92.30   95.45   98.20  
100   -2.34   -2.30   -0.99   -0.44   -0.57   8.99   6.39   4.51   3.97   3.57   5.90   7.15   6.05   4.90   5.75   71.20   96.00   99.65   99.90   100.00  
150   -2.50   -2.18   -1.04   -0.52   -0.52   7.94   5.21   3.71   3.21   2.95   7.10   7.35   6.10   4.90   5.80   85.10   99.45   100.00   100.00   100.00  
200   -2.95   -2.36   -1.08   -0.51   -0.57   7.05   4.73   3.37   2.88   2.57   8.25   8.55   7.70   6.50   5.70   94.55   99.90   100.00   100.00   100.00  
  

 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -2.50   -2.03   -0.98   -0.38   -0.55   14.54   10.27   7.74   7.23   6.34   6.60   7.20   6.10   6.65   5.90   39.80   62.10   79.85   82.80   89.35  
50   -2.58   -2.10   -0.81   -0.51   -0.52   11.58   8.08   6.09   5.31   4.95   6.85   6.50   6.15   5.75   5.60   55.75   81.10   93.30   96.45   98.40  
100   -2.08   -2.14   -0.88   -0.37   -0.54   7.97   6.04   4.31   3.89   3.51   5.70   7.25   6.15   5.40   6.10   80.65   96.75   99.80   99.95   100.00  
150   -2.40   -1.92   -0.92   -0.49   -0.46   6.89   4.88   3.54   3.10   2.90   7.25   7.10   5.80   5.10   5.55   93.30   99.70   100.00   100.00   100.00  
200   -2.69   -2.14   -0.96   -0.44   -0.49   6.22   4.39   3.22   2.75   2.53   8.25   7.75   6.75   6.05   5.60   98.45   100.00   100.00   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  
  

 30   -20.46   -3.19   -1.79   -1.05   -0.78   1278.76   10.93   7.21   6.12   5.43   9.95   9.10   7.80   7.70   6.80   39.75   66.70   87.80   93.50   96.25  
50   -9.43   -3.23   -1.59   -1.12   -0.88   356.48   8.81   5.55   4.70   4.34   8.95   9.90   7.20   7.25   6.60   48.55   81.60   97.10   99.15   99.70  
100   -2.25   -3.30   -1.72   -1.13   -0.96   99.43   6.69   4.25   3.42   3.11   9.05   12.20   9.20   6.95   7.60   58.00   97.15   99.95   100.00   100.00  
150   -34.29   -2.95   -1.83   -1.15   -0.87   819.84   5.85   3.63   2.94   2.65   11.15   11.85   10.50   8.60   8.60   65.35   98.90   100.00   100.00   100.00  
200   -2.09   -3.32   -1.76   -1.18   -0.93   101.18   6.98   3.22   2.59   2.30   11.70   16.50   10.80   8.95   7.70   70.55   99.45   100.00   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  
  

 30   -6.54   -4.05   -1.86   -0.96   -0.64   19.35   9.58   6.56   5.50   4.98   13.80   12.15   9.75   8.60   6.90   62.55   82.50   93.95   96.85   98.10  
50   -6.10   -4.52   -1.89   -1.25   -0.89   26.10   8.02   5.05   4.35   4.04   17.55   14.40   9.00   7.40   6.65   76.65   95.00   99.25   99.75   99.85  
100   -18.34   -4.40   -2.12   -1.38   -1.04   537.53   6.50   4.06   3.21   2.91   23.30   19.50   12.10   8.55   7.80   90.55   99.85   100.00   100.00   100.00  
150   -11.14   -4.26   -2.27   -1.43   -1.01   129.28   5.75   3.58   2.83   2.51   32.05   23.20   15.65   11.10   9.65   95.65   99.90   100.00   100.00   100.00  
200   -7.45   -4.62   -2.21   -1.46   -1.11   11.91   5.73   3.25   2.59   2.24   36.55   31.35   17.45   12.40   9.95   97.30   100.00   100.00   100.00   100.00  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 

generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives  gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, respectively   
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Table  5: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of 0.8=max  DGP is 
ARDL(2,1) model with heterogeneous coefficients, 0.8=max , stationary regressors, 2=m  factors, no feedback effects and 0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -5.95   -5.68   -2.87   -1.19   -1.86   21.83   14.77   10.87   9.28   8.23   7.70   8.65   7.45   5.75   6.90   28.35   51.30   63.45   66.20   79.25  
50   -6.32   -5.87   -2.92   -1.59   -1.70   17.52   12.12   8.42   7.36   6.68   7.90   9.45   6.90   6.60   6.50   40.50   70.75   82.50   86.35   92.55  

100   -6.47   -5.47   -3.03   -1.81   -1.67   13.09   9.40   6.46   5.24   4.83   9.35   12.35   8.85   5.85   7.70   65.10   91.90   98.25   98.95   99.70  
150   -6.24   -5.60   -2.95   -1.65   -1.70   11.21   8.34   5.55   4.40   4.07   10.55   13.85   9.40   6.25   8.50   80.95   98.45   99.95   99.85   99.95  
200   -6.32   -5.68   -3.08   -1.66   -1.68   10.26   7.94   5.05   4.00   3.55   12.30   18.90   10.70   8.05   8.10   90.40   99.65   100.00   100.00   100.00  

  
 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  

  

 30   -5.46   -5.46   -2.49   -1.12   -1.73   19.66   13.97   10.21   8.88   7.85   7.20   7.75   7.45   5.90   6.50   32.70   55.50   65.80   69.15   81.85  
50   -5.54   -5.31   -2.80   -1.29   -1.52   15.73   11.23   8.01   7.04   6.45   8.00   8.75   6.45   6.35   6.70   44.60   73.95   84.45   87.80   93.65  

100   -6.04   -5.03   -2.78   -1.64   -1.48   11.81   8.76   6.07   4.98   4.68   10.20   10.65   8.65   6.20   7.95   72.05   94.20   98.50   99.10   99.70  
150   -5.61   -5.12   -2.63   -1.46   -1.54   10.06   7.77   5.20   4.19   3.86   9.95   13.25   10.20   6.90   7.70   86.00   98.80   99.95   99.85   99.95  
200   -5.78   -5.05   -2.70   -1.47   -1.56   9.20   7.19   4.72   3.79   3.41   12.45   17.45   10.35   7.05   7.55   94.60   99.75   100.00   100.00   100.00  

  
 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  

  

 30  -12.89   -5.14   -2.82   -1.50   -1.28   786.15   19.34   9.43   7.65   6.69   10.85   11.55   8.90   7.35   7.60   35.00   55.00   74.90   82.50   90.00  
50  -2.09   -8.46   -2.72   -1.69   -1.29   394.84   187.62   7.57   6.04   5.40   11.55   10.80   9.15   8.00   7.45   37.90   68.50   89.35   95.00   97.90  

100  -30.77   -5.24   -2.87   -2.08   -1.45   768.23   19.56   5.70   4.55   4.04   11.50   14.75   10.10   9.15   9.00   44.10   85.50   98.85   99.75   100.00  
150  -15.09   -4.79   -2.98   -1.96   -1.47   375.14   18.01   5.25   3.85   3.37   12.30   16.90   14.00   10.65   9.30   46.45   92.40   99.50   100.00   100.00  
200  -1.15   -6.97   -3.07   -1.96   -1.47   229.52   69.18   4.68   3.59   2.98   12.30   22.20   15.75   12.30   9.85   49.15   95.30   100.00   100.00   100.00  

  
 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  

  

 30  -26.96  -31.57  -23.02  -21.56  -20.97   145.97   203.84   24.91   23.16   22.29   48.25   60.65   70.50   74.85   79.35   72.25   89.15   98.15   99.60   99.70  
50  -25.05  -27.49  -23.46  -21.76  -21.08   424.65   29.74   24.99   22.68   21.90   57.20   76.25   87.55   91.00   94.00   77.80   96.45   99.70   100.00   100.00  

100  -35.41  -27.96  -23.42  -22.14  -21.19   148.21   32.71   24.01   22.60   21.62   68.30   92.05   98.20   99.70   99.75   84.25   98.30   100.00   100.00   100.00  
150  -96.09  -27.09  -23.65  -22.06  -21.17   2622.39   41.48   24.07   22.37   21.46   72.70   96.05   99.85   99.95   100.00   85.90   99.10   100.00   100.00   100.00  
200  -30.44  -28.11  -23.68  -21.92  -21.27   248.48   30.67   24.00   22.18   21.48   73.70   97.70   100.00   100.00   100.00   85.25   98.95   100.00   100.00   100.00  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 

generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, respectively 
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Table  6: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of 0.9=max  DGP is 
ARDL(2,1) model with heterogeneous coefficients, 0.9=max , stationary regressors, 2=m  factors, no feedback effects and 0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30  -12.05  -11.37   -6.94   -4.56   -4.89   27.31   19.55   14.78   12.60   11.66   9.00   9.85   9.75   8.05   9.45   31.80   53.15   61.35   63.65   73.00  
50  -11.64  -10.52   -6.96   -4.69   -4.71   22.01   16.59   12.23   10.16   9.21   9.15   13.45   11.15   7.85   10.40   41.40   69.35   80.35   79.80   89.90  
100  -12.19  -10.74   -6.77   -4.77   -4.63   18.30   14.13   9.85   7.95   7.19   16.35   21.95   16.95   11.60   13.30   67.65   92.05   97.05   96.85   99.45  
150  -11.60  -10.76   -6.67   -4.79   -4.63   15.71   13.28   8.88   7.07   6.48   19.90   31.35   22.20   15.05   17.95   84.40   98.20   99.70   99.45   100.00  
200  -11.87  -10.66   -6.58   -4.88   -4.77   15.17   12.52   8.22   6.67   6.15   24.00   38.55   27.40   19.25   22.05   92.45   99.80   99.95   100.00   100.00  
  

 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30  -11.26  -10.51   -6.36   -4.21   -4.53   24.79   18.53   14.13   12.10   11.24   9.00   10.00   9.75   8.25   9.35   34.00   55.35   63.80   65.80   74.20  
50  -10.81   -9.80   -6.44   -4.41   -4.45   20.53   15.76   11.48   9.76   8.83   9.60   13.35   10.95   8.35   9.35   47.60   71.95   81.60   82.50   91.20  
100  -11.12   -9.97   -6.24   -4.39   -4.29   16.72   13.31   9.26   7.47   6.85   15.10   20.80   15.20   11.10   13.00   73.60   92.65   97.50   97.55   99.20  
150  -10.72  -10.13   -6.22   -4.53   -4.33   14.51   12.54   8.31   6.71   6.13   19.60   30.10   20.00   14.40   17.05   88.05   98.60   99.65   99.70   99.85  
200  -10.97   -9.94   -6.18   -4.53   -4.41   14.03   11.76   7.82   6.30   5.81   25.35   35.70   26.10   17.80   22.55   94.70   99.80   99.90   99.95   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  
  

 30  -21.58   -6.64   -3.38   -1.70   -1.36   438.72   121.05   12.25   9.96   8.51   11.25   11.05   8.35   8.00   7.25   29.00   46.80   61.95   69.25   76.05  
50   4.94   -5.49   -3.31   -2.27   -1.61   922.24   34.12   9.95   7.80   6.81   10.25   10.70   8.70   7.55   7.60   32.30   57.05   75.60   85.50   90.60  
100   8.35   -3.40   -3.87   -2.43   -1.82   770.17   112.28   7.72   5.92   5.01   10.95   13.90   11.85   9.55   8.00   35.55   71.20   94.40   97.10   99.25  
150  -22.01   -7.03   -3.45   -2.61   -1.84   513.85   91.47   6.40   5.07   4.24   10.65   16.85   11.95   11.30   8.75   35.85   78.90   97.40   99.75   99.80  
200   41.07   -4.61   -3.61   -2.70   -1.92   2063.94   127.98   5.90   4.57   3.80   12.45   17.90   14.55   12.30   10.25   38.60   82.55   99.35   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  
  

 30   21.99  -27.42  -22.99  -20.75  -20.04   1921.14   70.72   26.25   23.39   22.18   40.55   51.10   57.40   60.25   63.65   60.40   80.05   90.60   94.50   97.40  
50  -40.53  -25.17  -23.32  -21.48  -20.71   238.17   219.25   25.35   22.96   21.99   46.45   61.40   71.85   78.45   82.15   65.90   87.55   96.65   98.90   99.65  
100  -93.36  -34.65  -23.62  -21.97  -21.09   3030.40   242.83   27.18   22.76   21.72   54.20   75.05   92.25   93.50   97.30   72.30   91.90   99.55   99.80   100.00  
150  -33.97  -33.48  -23.56  -21.88  -20.96   472.17   329.85   24.24   22.39   21.39   55.15   81.65   96.60   99.15   99.60   71.60   93.60   99.85   100.00   99.95  
200  -37.78  -14.74  -23.75  -22.07  -21.10   247.78   701.23   24.30   22.42   21.41   59.35   86.65   98.80   99.90   100.00   73.45   94.25   100.00   100.00   100.00  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 

generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, respectively   

 
 



 

 40

Table  7: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of 3=m  Factors DGP is 
ARDL(2,1) model with heterogeneous coefficients, 0.6=max , stationary regressors, 3=m  factors, no feedback effects and 0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -1.85   -1.02   0.00   -0.01   -0.02   17.23   11.03   8.20   7.45   6.63   6.70   6.15   6.90   5.75   6.40   29.80   51.70   68.05   78.05   85.25  
50   -0.79   -0.63   -0.24   0.03   0.10   12.90   8.79   6.68   5.77   5.04   4.90   6.55   6.35   6.20   5.05   38.65   67.25   85.85   92.70   96.60  
100   -1.00   -0.94   -0.23   0.09   -0.15   9.57   6.23   4.73   4.12   3.72   5.70   5.40   5.55   5.20   5.35   61.05   92.80   99.10   99.60   99.95  
150   -1.19   -0.88   -0.02   0.00   -0.06   7.77   5.03   3.73   3.34   2.92   6.05   4.85   5.15   5.40   4.60   78.45   98.30   99.90   100.00   100.00  
200   -0.99   -0.78   -0.03   -0.03   0.09   6.62   4.50   3.23   2.88   2.61   5.00   5.60   5.20   4.85   4.90   89.15   99.60   100.00   100.00   100.00  
  

 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -1.59   -0.79   0.08   -0.04   0.01   15.07   10.40   7.96   7.15   6.57   7.05   6.40   7.05   5.95   6.45   34.10   54.25   72.20   80.00   86.40  
50   -0.91   -0.57   -0.17   0.03   0.11   11.51   8.27   6.44   5.57   4.93   5.65   6.50   6.55   5.50   5.00   47.50   71.95   88.25   93.90   97.65  
100   -1.01   -0.88   -0.21   0.10   -0.16   8.33   5.78   4.51   3.97   3.58   5.55   5.85   5.50   5.35   5.20   72.30   94.90   99.55   99.85   100.00  
150   -0.90   -0.72   -0.04   0.00   -0.07   6.78   4.73   3.61   3.28   2.88   6.20   5.15   5.70   5.35   4.80   87.25   99.10   100.00   100.00   100.00  
200   -0.96   -0.63   -0.05   0.01   0.08   5.79   4.19   3.08   2.81   2.55   5.25   6.30   5.10   5.40   5.60   94.80   99.85   100.00   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  
  

 30   -5.34   -2.54   -0.89   -0.10   0.34   144.86   11.33   7.34   6.29   5.65   9.10   8.80   7.80   6.70   7.15   37.10   61.60   83.70   88.95   93.35  
50   -5.60   -2.52   -1.03   -0.20   0.23   157.20   9.36   5.91   4.86   4.28   9.20   9.80   8.10   6.20   5.85   44.65   76.50   94.60   98.05   99.40  
100   -0.04   -3.29   -1.21   -0.23   -0.07   83.58   10.20   4.28   3.43   3.10   9.65   11.05   7.85   6.65   6.25   56.30   95.20   100.00   100.00   100.00  
150   -4.99   -2.93   -0.94   -0.44   0.01   94.15   7.97   3.48   2.82   2.54   11.80   13.50   8.20   4.80   5.40   64.25   98.65   99.95   100.00   100.00  
200   7.81   1.08   -1.01   -0.36   0.08   383.41   178.92   3.08   2.51   2.23   12.10   15.05   8.15   6.75   6.55   67.70   99.60   100.00   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  
  

 30  -24.61  -25.74  -22.19  -20.87  -20.48   271.79   27.83   23.55   22.09   21.54   57.05   70.00   81.45   84.80   86.65   84.95   97.50   99.85   99.95   100.00  
50  -29.47  -25.95  -22.39  -21.20  -20.52   39.80   27.22   23.27   21.90   21.18   70.30   88.00   94.45   97.15   98.05   91.90   99.65   100.00   100.00   100.00  
100  -30.85  -26.44  -22.73  -21.26  -20.94   37.04   27.17   23.16   21.63   21.28   85.75   98.60   100.00   99.95   100.00   96.20   99.95   100.00   100.00   100.00  
150  -31.83  -26.42  -22.46  -21.61  -20.86   48.65   26.97   22.76   21.85   21.08   89.95   99.95   99.95   100.00   100.00   96.05   99.95   100.00   100.00   100.00  
200  -29.13  -26.22  -22.55  -21.46  -20.80   108.14   26.59   22.77   21.66   20.97   91.85   99.85   100.00   100.00   100.00   96.20   100.00   100.00   100.00   100.00  

 Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic 

innovations generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, 

respectively 
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Table  8: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of Unit Roots in Factors  
DGP is ARDL(2,1) model with heterogeneous coefficients, 0.6=max , unit roots in factors, 2=m  factors, no feedback effects and 0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -1.04   -1.04   -0.14   0.06   0.05   16.26   11.33   8.28   7.27   6.55   5.65   6.85   6.60   5.95   6.55   28.50   53.25   71.45   78.30   86.40  
50   -0.84   -0.84   -0.30   0.20   -0.16   12.76   8.51   6.56   5.79   5.18   5.15   4.85   5.35   6.40   5.70   38.25   70.50   87.65   92.80   97.10  
100   -1.42   -0.99   -0.04   0.03   -0.14   9.37   6.29   4.55   4.05   3.62   5.30   5.50   5.10   5.55   5.40   63.55   92.60   98.75   99.80   100.00  
150   -1.15   -0.91   -0.14   -0.08   0.01   7.87   5.26   3.73   3.31   2.91   5.90   6.40   4.75   4.95   4.90   78.30   98.10   99.95   100.00   100.00  
200   -1.14   -0.79   -0.21   -0.03   0.03   6.79   4.43   3.24   2.90   2.50   5.50   4.95   5.20   5.10   4.95   88.00   99.65   100.00   100.00   100.00  
  

 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -0.69   -0.78   -0.15   0.09   0.04   14.53   10.66   8.01   7.04   6.47   6.25   6.75   6.80   6.15   7.20   33.10   57.20   72.95   80.50   88.00  
50   -0.69   -0.81   -0.27   0.19   -0.24   11.42   7.97   6.17   5.62   5.06   5.05   5.25   5.80   6.40   5.60   45.45   74.10   90.60   94.15   97.55  
100   -1.17   -0.80   -0.05   0.02   -0.09   8.25   5.77   4.38   4.03   3.60   5.40   5.55   5.80   5.65   5.60   72.60   95.00   99.50   99.90   100.00  
150   -0.94   -0.82   -0.14   -0.05   0.03   6.98   4.88   3.55   3.20   2.85   6.05   5.90   5.70   5.15   5.40   86.00   98.90   100.00   100.00   100.00  
200   -0.98   -0.70   -0.20   -0.01   0.01   5.96   4.15   3.16   2.83   2.48   5.60   5.45   5.60   5.40   5.20   94.05   99.90   100.00   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  
  

 30   14.28   -3.42   -1.78   -0.89   -0.48   760.36   14.43   7.34   6.04   5.47   9.40   10.10   8.35   6.75   7.20   38.75   66.45   88.85   93.30   96.40  
50   -3.16   -3.92   -2.23   -1.19   -0.94   106.12   9.21   6.14   4.87   4.52   11.35   10.70   10.25   7.65   8.40   49.10   83.25   96.90   99.25   99.55  
100   -9.23   -5.09   -2.62   -1.63   -1.20   293.70   7.95   4.67   3.75   3.31   15.00   18.15   12.30   9.90   8.40   65.15   97.95   100.00   100.00   100.00  
150  -12.59   -5.44   -2.95   -1.97   -1.39   395.28   7.37   4.33   3.35   2.78   18.40   25.50   18.25   13.50   8.80   73.35   99.55   100.00   100.00   100.00  
200   -5.66   -5.90   -3.07   -2.04   -1.47   91.39   7.55   4.15   3.13   2.56   21.95   34.35   22.30   16.80   11.60   77.50   99.90   100.00   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  
  

 30  -28.65  -26.01  -22.78  -21.75  -21.38   43.69   28.01   24.09   22.81   22.34   54.90   72.60   84.75   89.45   91.55   84.60   97.80   99.90   100.00   100.00  
50  -30.99  -26.05  -23.52  -21.99  -21.78   80.99   27.34   24.34   22.65   22.38   67.60   87.65   96.40   98.10   99.00   89.65   99.60   100.00   100.00   100.00  
100  -32.82  -27.17  -23.82  -22.65  -21.99   69.50   27.81   24.20   22.98   22.28   86.30   99.45   100.00   100.00   100.00   95.80   99.95   100.00   100.00   100.00  
150  -26.37  -27.61  -24.12  -22.92  -22.31   175.08   28.01   24.37   23.13   22.50   92.10   99.95   100.00   100.00   100.00   96.95   100.00   100.00   100.00   100.00  
200  -32.57  -27.95  -24.27  -22.94  -22.32   41.83   28.25   24.46   23.11   22.46   93.85   100.00   100.00   100.00   100.00   96.45   100.00   100.00   100.00   100.00  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 

generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, respectively  
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Table  9: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of Unit Roots in 
Regressor Specific Components DGP is ARDL(2,1) model with heterogeneous coefficients, 0.6=max , unit roots in itv , 2=m  factors, no 
feedback effects and 0=i . 

    Bias (x100)   Root Mean Square Errors (x100)    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -2.99   0.37   0.25   0.33   -0.13   65.72   32.60   15.74   10.52   8.06   5.70   5.00   5.45   5.70   5.65   7.85   11.45   29.45   52.30   72.85  
50   -0.20   0.66   -0.40   0.24   0.20   51.19   26.47   12.29   8.26   6.42   5.45   6.40   6.00   5.25   5.30   8.30   14.55   42.20   69.35   87.30  
100   -0.76   -0.50   -0.09   0.11   0.09   37.01   18.87   9.00   5.88   4.44   4.70   5.65   6.00   5.00   4.45   9.40   22.00   64.90   91.60   99.05  
150   -0.85   -0.17   -0.25   -0.06   0.08   30.36   15.18   7.17   4.76   3.72   4.55   5.35   5.80   4.90   5.45   10.75   27.15   81.85   98.60   99.90  
200   0.15   -0.14   -0.18   -0.17   0.18   27.24   13.26   6.28   4.21   3.15   5.90   5.55   5.40   6.00   5.00   12.25   34.05   89.65   99.60   100.00  
  

 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -1.75   0.62   -0.04   -0.01   -0.06   47.00   24.71   12.38   9.06   7.13   5.20   5.60   6.50   7.40   6.70   8.95   14.60   40.85   64.45   78.95  
50   -0.67   0.37   0.00   -0.01   0.02   36.30   19.19   9.39   6.88   5.64   4.95   5.40   5.70   6.45   6.30   10.40   20.25   57.30   82.95   93.15  
100   -0.92   -0.95   -0.24   -0.01   -0.01   27.06   13.97   6.90   4.75   4.01   6.15   5.90   5.85   4.95   5.10   14.50   35.45   84.50   98.25   99.50  
150   -1.09   -0.34   -0.08   -0.13   0.13   21.26   11.24   5.47   3.98   3.31   4.70   5.55   4.75   5.45   4.85   16.95   46.00   95.00   99.75   100.00  
200   -0.05   -0.11   -0.03   -0.10   0.07   18.94   9.81   4.74   3.45   2.76   4.95   5.45   5.00   5.05   5.20   20.10   55.20   98.25   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  
  

 30   11.59   -2.76   -0.64   -0.09   -0.27   1487.96   52.46   15.63   10.51   8.10   5.00   5.80   5.60   5.70   6.00   7.30   12.85   31.35   55.35   73.00  
50   -28.86   -0.82   -0.92   -0.12   -0.02   1128.77   27.42   12.19   8.26   6.34   4.60   6.10   6.70   5.80   5.60   7.95   14.95   44.25   70.55   88.30  
100   -6.61   -1.86   -0.68   -0.24   -0.12   361.66   19.50   9.00   5.77   4.47   4.70   5.10   6.35   5.25   5.80   8.75   22.25   67.60   93.20   99.20  
150   -61.57   -1.90   -0.82   -0.28   -0.11   2620.58   16.18   7.17   4.67   3.67   4.05   5.40   5.50   4.95   5.80   10.05   30.85   83.80   99.00   99.95  
200   2.04   -1.54   -0.68   -0.41   0.00   336.21   14.05   6.24   4.21   3.12   5.05   5.25   5.45   5.55   4.90   11.10   36.55   91.45   99.70   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  
  

 30   -14.85   -9.27   -4.73   -2.76   -2.30   146.76   36.98   17.15   11.44   8.94   6.65   6.45   6.85   7.05   7.30   12.20   17.30   38.80   58.70   76.15  
50   -18.57   -8.15   -4.38   -2.42   -1.79   136.51   28.29   13.16   8.92   6.79   6.80   7.15   7.35   6.70   6.15   12.90   22.80   53.80   76.50   91.50  
100   -16.57   -8.00   -3.42   -2.03   -1.39   72.70   20.94   9.73   6.19   4.75   6.60   7.90   7.75   6.75   7.15   16.30   33.75   76.10   95.75   99.40  
150   -12.87   -7.13   -3.19   -1.80   -1.24   85.37   17.40   7.87   5.12   3.91   8.00   7.75   7.90   6.95   7.00   19.85   43.15   89.60   99.30   100.00  
200   -16.82   -6.73   -2.89   -1.82   -1.04   346.63   15.13   6.99   4.62   3.33   8.45   7.75   8.35   7.75   6.15   23.20   51.75   95.40   99.90   100.00  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 

generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, respectively 
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Table  10: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of Serially Correlated 
Idiosyncratic Errors DGP is ARDL(2,1) model with heterogeneous coefficients, 0.6=max , stationary regressors, 2=m  factors, no 
feedback effects and  0,0.8IIDUi : . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -1.11   -0.45   -0.21   0.01   0.12   21.91   14.75   11.44   10.33   8.89   7.05   6.00   5.40   6.25   5.55   20.20   31.40   47.00   53.70   64.15  
50   -0.29   -1.04   0.08   -0.15   -0.04   16.85   11.71   8.88   7.89   6.96   5.25   6.20   5.95   5.00   5.95   24.05   46.65   64.10   71.85   82.20  
100   -1.22   -0.75   -0.11   0.03   0.08   12.21   8.14   6.04   5.55   4.97   4.80   5.05   4.85   4.45   5.90   43.90   72.35   90.05   94.50   97.70  
150   -1.21   -1.04   -0.07   0.09   -0.03   10.05   6.90   5.22   4.65   4.16   5.05   5.40   5.55   5.35   6.65   58.00   86.40   96.80   99.15   99.70  
200   -1.28   -0.80   0.05   0.01   -0.08   8.62   5.89   4.56   3.99   3.45   5.40   5.25   6.25   5.45   4.15   70.00   94.45   99.05   99.95   100.00  
  

 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -0.86   -0.35   -0.06   -0.12   0.22   20.29   14.11   11.03   10.01   8.71   6.85   6.30   6.25   6.20   6.30   24.05   33.80   49.75   58.05   67.25  
50   -0.35   -0.97   0.10   -0.11   -0.05   15.46   11.22   8.51   7.57   6.73   5.70   5.95   5.10   5.60   5.55   28.65   50.00   67.10   75.40   83.80  
100   -1.11   -0.57   -0.11   0.08   0.15   11.05   7.75   5.89   5.28   4.75   5.30   4.50   4.65   5.00   4.55   49.65   75.05   91.10   95.30   98.35  
150   -1.00   -0.77   -0.07   0.02   -0.05   9.06   6.50   5.02   4.43   4.01   5.20   5.45   5.55   4.90   6.00   66.10   90.00   97.60   99.45   99.75  
200   -1.01   -0.52   0.00   0.04   -0.05   7.93   5.59   4.35   3.82   3.36   5.95   5.30   5.70   4.60   4.75   76.15   95.40   99.60   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  
  

 30   -
15.73  

 22.36   16.11   16.50   17.10   1331.93   276.49   20.13   19.44   19.45   6.85   14.05   31.85   40.85   50.60   9.65   10.65   11.80   11.75   11.80  

50   -1.80   13.61   16.51   16.65   17.00   568.06   81.68   19.19   18.46   18.44   7.50   20.60   46.55   61.45   71.70   8.95   11.60   11.20   12.80   11.60  
100   43.49   16.66   15.91   16.56   17.04   1184.81   34.38   17.18   17.47   17.81   10.55   36.15   72.45   88.25   94.65   7.80   10.90   12.10   12.80   14.00  
150   21.78   16.67   16.16   16.54   16.87   382.97   38.39   17.12   17.17   17.40   11.05   47.10   88.60   96.60   99.05   7.10   14.00   16.20   15.60   15.90  
200   15.42   -

93.00  
 16.23   16.65   16.86   323.97   4968.11   16.94   17.14   17.26   13.40   57.50   95.35   99.35   99.90   5.85   13.25   17.45   17.80   17.90  

  
 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  

  

 30   16.40   -6.69   16.36   17.54   18.91   697.94   880.16   23.81   22.65   23.23   6.75   7.70   17.15   24.65   30.80   17.05   15.95   12.15   10.70   9.60  
50  -20.75   12.88   15.81   17.78   18.31   2302.74   61.28   23.24   20.87   21.06   4.45   9.05   23.80   38.50   44.45   15.95   16.20   11.95   8.50   8.80  
100   48.11   12.90   15.75   18.12   18.87   1567.80   164.94   41.04   22.77   20.28   5.10   11.70   46.05   66.15   75.90   17.95   17.55   11.35   8.55   6.65  
150   26.90   12.79   16.79   17.82   18.81   1050.80   491.93   18.79   18.97   19.79   3.85   16.40   63.75   83.05   91.10   15.30   18.55   11.85   8.90   8.05  
200   0.27  -25.36   16.89   16.07   18.58   354.88   1004.96   19.27   84.64   19.27   3.65   20.55   79.10   92.90   96.70   16.75   17.85   11.20   9.20   7.35  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 

generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, respectively    
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Table  11: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of Breaks in Errors  
DGP is ARDL(2,1) model with heterogeneous coefficients, 0.6=max , stationary regressors, 2=m  factors, no feedback effects and breaks 
in errors. 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -1.72   -1.26   0.09   0.11   0.25   18.91   12.45   9.88   9.03   7.86   7.20   6.45   6.60   6.05   6.15   25.55   44.75   59.60   64.90   72.45  
50   -0.83   -0.82  -0.08   0.09   0.05   14.33   10.13   7.55   6.75   6.27   4.90   6.25   5.75   4.80   5.85   33.70   58.60   78.05   83.05   87.85  
100   -1.00   -0.91  -0.08   0.10   -0.06   10.50   7.00   5.23   5.00   4.37   5.30   5.15   4.75   5.70   4.95   54.90   85.70   95.85   96.95   99.20  
150   -0.88   -0.90  -0.10   0.05   -0.05   8.57   5.62   4.43   4.01   3.63   6.00   5.35   6.05   4.50   4.75   71.40   95.80   99.25   99.70   100.00  
200   -0.63   -0.85  -0.29   0.00   -0.01   7.47   4.92   3.72   3.36   3.12   5.50   5.00   4.90   4.55   4.70   80.85   98.15   100.00   100.00   100.00  
  

 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -1.57   -1.05   0.01   0.15   0.10   16.82   12.04   9.49   8.78   7.74   7.10   7.10   6.60   6.70   6.80   30.20   48.15   61.50   66.10   74.70  
50   -1.13   -0.72  -0.04   0.10   0.06   12.71   9.34   7.25   6.48   6.09   4.80   6.20   5.70   5.05   5.75   41.60   63.65   80.55   84.65   89.50  
100   -0.90   -0.78  -0.15   0.03   -0.02   9.11   6.53   5.03   4.80   4.27   5.55   5.45   4.80   5.65   5.50   63.95   89.15   96.85   98.20   99.55  
150   -0.83   -0.79  -0.03   0.09   -0.03   7.40   5.37   4.23   3.86   3.52   5.45   5.75   5.55   4.70   4.75   81.20   96.60   99.40   99.85   99.95  
200   -0.65   -0.78  -0.27   -0.01   -0.05   6.61   4.71   3.59   3.25   3.01   5.20   4.75   4.90   4.50   4.60   87.80   99.35   99.95   100.00   100.00  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  
  

 30   6.24   6.67   9.59   11.95   14.00   143.70   16.06   14.00   14.80   16.05   5.15   7.90   20.45   33.40   47.30   19.30   28.25   32.35   24.85   19.80  
50   10.20   7.71   9.03   11.55   13.95   111.76   19.37   11.73   13.27   15.25   5.70   11.20   24.55   46.10   68.65   21.30   33.45   41.95   32.90   22.50  
100   30.94   7.07   9.19   11.58   13.88   514.17   26.38   10.71   12.48   14.59   6.45   13.35   44.50   75.60   91.90   24.45   50.40   57.90   48.75   35.30  
150   24.76   7.07   8.80   11.62   13.67   876.89   15.90   9.83   12.24   14.13   7.50   18.80   58.30   89.95   98.20   25.80   57.75   74.45   62.40   47.05  
200   1.98   6.22   8.85   11.51   13.76   403.92   28.52   9.58   11.97   14.12   7.80   22.55   70.15   96.35   99.70   28.30   66.50   84.55   73.25   54.60  
  

 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  
  

 30  -28.03   -10.64  -5.13   -1.40   2.17   411.57   21.22   12.54   10.55   10.34   25.20   21.75   13.05   8.55   6.90   54.20   64.00   67.10   60.45   52.10  
50  -15.90   -9.72  -5.33   -1.90   2.08   78.66   20.38   11.70   8.89   8.24   28.55   23.30   14.90   9.95   6.65   59.20   75.90   82.00   76.55   65.05  
100  -30.60   -11.17  -5.39   -1.63   2.16   353.77   28.48   9.12   5.93   6.09   34.05   33.95   20.45   8.00   6.95   69.50   89.50   95.20   94.20   86.30  
150  -15.01   381.68  -5.79   -1.55   2.13   497.45   17476   7.85   5.01   5.18   38.45   41.60   26.80   8.50   7.75   74.20   93.75   98.75   97.80   94.45  
200  -14.40   -11.21  -5.69   -1.72   2.24   123.28   26.47   7.33   4.61   4.59   41.95   49.25   30.75   9.95   8.20   76.90   95.45   99.60   99.55   98.75  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 

generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, respectively.   
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Table  12: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of LR Coefficient ( ) in the Case of Feedback Effects  
DGP is ARDL(2,1) model with heterogeneous coefficients, 0.6=max , stationary regressors, 2=m  factors,  0,0.2IIDUyi : , and 0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 1=:0 H )   Power (5% level, 1.2=:1 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
  

 CS-DL mean group ( 0=yp ,  1/3= Tpx  and 1= xpp )  
  

 30   -1.51   2.38   5.10   5.74   5.84   16.20   10.51   9.35   9.16   8.54   6.00   6.60   12.50   15.70   18.20   32.55   43.95   53.10   57.00   65.75  
50   -1.45   2.38   5.11   5.48   6.06   12.54   8.54   7.91   7.68   7.79   6.50   8.10   14.45   19.00   25.55   45.25   62.35   70.55   77.40   81.15  

100   -0.97   2.85   5.16   5.61   6.05   8.88   6.34   6.70   6.85   6.93   5.80   7.90   23.30   31.85   43.05   69.00   85.35   92.80   95.60   97.85  
150   -1.23   2.64   5.05   5.68   6.15   7.50   5.41   6.12   6.45   6.76   5.80   8.70   30.90   46.05   59.55   84.60   95.60   98.90   99.50   99.90  
200   -1.46   2.55   4.91   5.61   6.03   6.57   4.72   5.75   6.26   6.50   6.30   9.90   37.55   55.20   71.25   92.90   98.75   99.90   99.95   100.00  

  
 CS-DL pooled ( 0=yp ,  1/3= Tpx  and 1= xpp )  

  

 30   2.28   4.73   6.80   7.10   7.00   14.57   10.87   10.37   10.04   9.43   7.25   8.90   17.20   19.90   21.25   30.75   40.75   45.90   50.95   57.55  
50   2.26   4.83   6.77   6.89   7.40   11.41   9.10   8.96   8.75   8.94   6.55   10.70   21.25   26.60   33.25   41.50   54.60   61.40   69.95   72.05  

100   2.96   5.30   6.89   7.10   7.42   8.53   7.65   8.07   8.11   8.17   7.20   16.60   37.05   47.05   58.10   61.00   75.60   85.40   89.95   92.90  
150   2.70   5.07   6.72   7.20   7.50   7.21   6.83   7.55   7.84   8.03   8.05   20.65   50.65   63.80   75.60   76.60   90.55   95.50   97.85   98.55  
200   2.47   5.10   6.68   7.15   7.36   6.21   6.40   7.30   7.68   7.78   7.60   25.45   62.00   75.80   85.45   87.80   95.70   99.05   99.50   99.80  

  
 Based on CS-ARDL estimates of short-run coefficients (ARDL(2,1) specifications with  1/3= Tpz ).  

  

 30  -49.31   -6.64   -2.84   -1.50   -1.23   1613.71   11.90   7.13   6.12   5.29   17.15   14.35   8.40   8.70   7.50   54.75   80.05   93.55   95.05   97.95  
50   15.94   -7.02   -3.05   -2.03   -1.28   1208.10   10.96   6.01   4.85   4.27   19.45   19.25   11.10   8.95   7.75   65.05   93.30   99.15   99.90   99.70  

100  -17.83   -6.54   -3.06   -2.00   -1.50   120.30   9.22   4.83   3.81   3.25   26.80   26.90   15.40   12.55   10.15   78.50   99.35   100.00   100.00   100.00  
150  -14.20   -6.84   -3.24   -2.06   -1.45   127.42   8.28   4.40   3.27   2.74   32.55   35.75   21.15   13.70   9.90   82.20   99.90   100.00   100.00   100.00  
200  -17.89   -7.08   -3.39   -2.15   -1.57   283.24   8.22   4.28   3.15   2.56   37.60   47.30   27.80   19.30   12.55   83.90   99.85   100.00   100.00   100.00  

  
 Based on CS-ARDL estimates of short-run coefficients (ARDL(1,0) specifications with  1/3= Tpz ).  

  

 30   -3731  -29.77  -24.72  -23.08  -22.33   236.77   31.59   25.86   24.09   23.27   74.60   86.65   91.90   93.30   94.25   93.00   99.70   100.00   100.00   100.00  
50  -39.45  -29.96  -25.01  -23.50  -22.67   100.20   30.98   25.63   24.07   23.19   88.15   97.15   99.00   99.55   99.80   96.60   100.00   100.00   100.00   100.00  

100  -38.09  -30.16  -25.06  -23.56  -22.75   60.47   30.71   25.39   23.86   23.02   94.90   99.80   100.00   100.00   100.00   97.70   99.95   100.00   100.00   100.00  
150  -37.23  -30.28  -25.21  -23.61  -22.85   52.96   30.76   25.43   23.80   23.03   95.80   99.85   100.00   100.00   100.00   97.80   99.90   100.00   100.00   100.00  
200  -39.43  -30.46  -25.40  -23.73  -22.89   54.51   30.72   25.56   23.88   23.03   95.80   99.90   100.00   100.00   100.00   97.85   99.95   100.00   100.00   100.00  

Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic innovations 

generated according to (40)-(41) with 0.6=a . The knowledge of lag orders is not used in the estimation stage and the integer part of 
1/3T  gives 3,3,4,5  and 5 for T=30,50,100,150  and 200, respectively.    
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Table  13: Monte Carlo Estimates of Bias, RMSE, Size and Power for Estimation of  11 = iE   DGP is ARDL(1,0) model with 
homogeneous long-run, heterogeneous short-run, 0.6=max , stationary regressors, 2=m  factors, no feedback effects and 0=i . 

    Bias ( 100 )   Root Mean Square Errors ( 100 )    Size (5% level, 0.3=: 10 H )   Power (5% level, 0.4=: 11 H )  

 (N,T)   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200   30   50   100   150   200  
   Imposing CS-DL pooled estimate of long-run coefficient    

 30   -8.38   -4.35   -1.90   -1.01   -0.86   10.26   6.22   4.18   3.68   3.64   51.45   27.60   12.50   9.10   9.35   96.25   95.00   93.45   90.70   90.80  
50   -8.89   -4.78   -2.13   -1.36   -0.98   10.00   5.88   3.55   3.13   2.86   70.70   42.25   16.15   12.35   9.25   99.50   99.70   99.60   98.85   99.10  
100   -9.27   -4.92   -2.30   -1.49   -1.15   9.85   5.51   3.10   2.44   2.24   91.55   64.60   24.90   15.75   11.70   100.00   100.00   100.00   100.00   100.00  
150   -9.36   -5.10   -2.40   -1.48   -1.16   9.79   5.48   2.92   2.18   1.97   98.15   82.40   36.15   19.75   14.55   100.00   100.00   100.00   100.00   100.00  
200   -9.37   -5.09   -2.36   -1.55   -1.10   9.72   5.40   2.76   2.08   1.74   99.15   89.95   45.75   24.10   16.00   100.00   100.00   100.00   100.00   100.00  

   Infeasible estimator: Imposing knowledge of long run coefficients    
 30   -7.95   -4.01   -1.77   -0.94   -0.78   9.48   5.73   4.00   3.53   3.53   48.40   23.30   11.55   8.25   8.50   97.25   95.85   93.10   91.65   91.15  
50   -8.42   -4.41   -1.98   -1.29   -0.88   9.31   5.43   3.38   3.01   2.77   70.60   36.55   14.45   11.00   8.00   99.80   99.85   99.65   98.90   99.20  
100   -8.73   -4.50   -2.13   -1.44   -1.07   9.21   5.05   2.91   2.36   2.15   93.00   60.65   22.30   14.25   10.85   100.00   100.00   100.00   100.00   100.00  
150   -8.77   -4.67   -2.21   -1.41   -1.08   9.13   5.03   2.71   2.10   1.88   98.20   77.70   31.50   18.25   13.00   100.00   100.00   100.00   100.00   100.00  
200   -8.83   -4.67   -2.18   -1.48   -1.01   9.12   4.95   2.57   2.00   1.65   99.30   86.65   38.80   22.30   14.10   100.00   100.00   100.00   100.00   100.00  

   Unconstrained CS-ARDL approach    
 30   -12.76   -6.34   -2.78   -1.58   -1.20   13.99   7.73   4.63   3.83   3.70   74.60   42.30   16.65   10.75   10.50   99.30   98.15   95.80   93.50   92.40  
50   -13.34   -6.79   -3.04   -1.96   -1.37   14.11   7.59   4.14   3.40   3.01   92.00   63.95   24.05   14.95   10.55   99.95   99.95   99.80   99.30   99.60  
100   -13.71   -6.96   -3.22   -2.13   -1.57   14.12   7.38   3.82   2.87   2.47   99.45   88.25   40.65   23.45   15.25   100.00   100.00   100.00   100.00   100.00  
150   -13.77   -7.14   -3.30   -2.09   -1.59   14.10   7.41   3.68   2.63   2.23   99.85   96.95   57.80   30.35   21.40   100.00   100.00   100.00   100.00   100.00  
200   -13.83   -7.13   -3.27   -2.17   -1.52   14.10   7.35   3.56   2.56   2.02   100.00   99.55   67.90   40.00   23.70   100.00   100.00   100.00   100.00   100.00  

 Notes: The dependent variable and regressors are generated according to (36)-(37) with correlated fixed effects, and with cross-sectionally weakly dependent and serially correlated heteroskedastic idiosyncratic 

innovations generated according to (40)-(41) with 0.6=a .   

 
Table  14: List of the 40 Countries in the Sample 

Europe     MENA Countries     Asia Pacific     Latin America  
Austria     Egypt     Australia     Argentina  
Belgium     Iran     China     Brazil  
Finland     Morocco     India     Chile  
France     Syria     Indonesia     Ecuador  
Germany     Tunisia     Japan     Peru  
Italy     Turkey     Korea     Venezuela  
Netherlands         Malaysia      
Norway     North America     New Zealand     Rest of Africa  
Spain     Canada     Philippines     Nigeria  
Sweden     Mexico     Singapore     South Africa  
Switzerland     United States     Thailand      
United Kingdom              

  
 



 

 47

Table  15: Fixed Effects (FE) Estimates of the Long-Run Effects Based on the ARDL Approach, 1966-2010 
    ARDL (1 lag)   ARDL (2 lags)   ARDL (3 lags)  
  (a) (b)  (c) (a) (b)  (c) (a) (b)  (c) 

d
�
    -0.075


  

  
 -0.069


   -0.061


  

  
 -0.054


   -0.055


  

  
 -0.044


  

  (0.009)     (0.008)   (0.010)     (0.009)   (0.016)     (0.013)  


�   

  
 -0.025


   -0.025


  

  
 -0.025


   -0.026


  

  
 -0.025


   -0.024


  

    (0.007)   (0.004)     (0.007)   (0.006)     (0.008)   (0.006)  

�
    -0.854


   -0.790


   -0.876


   -0.839


   -0.771


   -0.861


   -0.768


   -0.723


   -0.771


  

  (0.052)   (0.064)   (0.051)   (0.045)   (0.051)   (0.048)   (0.045)   (0.039)   (0.049)  
CD test statistics   24.52   34.72   26.35   23.20   34.90   24.96   21.85   32.68   23.31  

TN     1642   1725   1642   1602   1685   1602   1562   1645   1562  

Notes: The ARDL specification is given by: itti
'
i

p
tii

p
iit uycy     ,0=,1=

= xβ , where ity  is the log of real GDP,  'ititit d ,= x , itd  is the log of debt to GDP ratio, it  is the 

inflation rate, and 1,2,=p  and 3 . ,1=
1=  i

p
i    and  i

p
ii βθ 

0=
1=  . The reported standard errors are robust to cross-sectional heteroskedasticity and residual serial correlation as in   Arellano1987. 

Symbols ***, **, and * denote significance at 1%, 5%, and at 10% respectively. 
 

Table  16: Mean Group (MG) Estimates of the Long-Run Effects Based on the ARDL Approach, 1966-2010 
    ARDL (1 lag)   ARDL (2 lags)   ARDL (3 lags)  

  (a) (b)  (c) (a) (b)  (c) (a) (b)  (c) 

d
�
    -0.070


       -0.070


   -0.061


       -0.076


   -0.066


       -0.083


  

  (0.015)     (0.012)   (0.014)     (0.013)   (0.016)     (0.014)  


�   

     -0.104


   -0.038


       -0.054


  
 0.021       -0.091


  

 0.040  

    (0.021)   (0.023)     (0.024)   (0.030)     (0.032)   (0.040)  

�
    -0.791


   -0.764


   -0.811


   -0.836


   -0.742


   -0.809


   -0.769


   -0.687


   -0.761


  

  (0.028)   (0.037)   (0.030)   (0.039)   (0.044)   (0.047)   (0.043)   (0.041)   (0.053)  
CD test statistics   19.15   33.62   21.39   16.99   31.21   16.63   16.42   30.39   15.98  

TN     1642   1725   1642   1602   1685   1602   1562   1645   1562  

Notes: The ARDL specification is given by: itti
'
i

p
tii

p
iit uycy     ,0=,1=

= xβ , where ity  is the log of real GDP,  'ititit d ,= x , itd  is the log of debt to GDP ratio, it  is the inflation rate, and 

1,2,=p  and 3 . ,1=
1=  i

p
i    and 

 i
p

ii βθ 

0=
1=  . Symbols ***, **, and * denote significance at 1%, 5%, and at 10% respectively.   
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Table  17: Mean Group Estimates of the Long-Run Effects Based on the Cross-Sectionally Augmented ARDL (CS-ARDL) Approach, 
1966-2010 

    CS-ARDL (1 lag)   CS-ARDL (2 lags)   CS-ARDL (3 lags)  
  (a) (b)  (c) (a) (b)  (c) (a) (b)  (c) 

d
�
    -0.087


       -0.087


   -0.090


       -0.079


   -0.096


       -0.120


  

  (0.013)     (0.016)   (0.013)     (0.022)   (0.016)     (0.040)  
                   


�

  
     -0.083


   -0.164


       -0.071


   -0.110


       -0.065   -0.080  

    (0.034)   (0.038)     (0.031)   (0.035)     (0.041)   (0.059)  
                   

�
   

 -0.889


   -0.790


   -0.952


   -0.967


   -0.817


   -1.058


   -0.920


   -0.792


   -1.210


  

  (0.031)   (0.041)   (0.039)   (0.042)   (0.053)   (0.053)   (0.047)   (0.058)   (0.201)  
                   

CD test statistics   -0.94   -0.30   0.55   -0.43   0.02   -0.11   -0.21   0.05   -0.56  
TN     1599   1657   1599   1581   1652   1581   1562   1645   1562  

Notes: The cross-sectionally augmented ARDL (CS-ARDL) regressions include the cross-sectional average of the dependent variable and the regressors together with three lags of these cross-sectional averages. The cross-

sectionally augmented ARDL specification is given by: 
itt

'

iti

'

i
p

tii
p

iit eycy    
zψxβ 3

0=,0=,1=
=  , where '

ititit d ),(= x ,  ''
ttt y xz ,=  , 

 i
p

i   1=
1=  and 

 i
p

ii βθ 
0=

1=  , and 1,2=p  

and 3 . See also the notes to Table 14. 
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Table  18: Mean Group Estimates of the Long-Run Effects Based on the Cross-Sectionally Augmented Distributed Lag (CS-DL) Approach, 
1966-2010 

    CS-DL (1 lag)   CS-DL (2 lags)    CS-DL (3 lags)  
  (a) (b)  (c) (a) (b)  (c) (a) (b)  (c) 
                    

d
�
    -0.084


       -0.087


   -0.078


       -0.084


   -0.068


       -0.082


  

  (0.013)     (0.014)   (0.014)     (0.017)   (0.014)     (0.020)  
                   


�

  
     -0.066


   -0.089


       -0.072


   -0.086


       -0.072


   -0.086


  

    (0.021)   (0.026)     (0.024)   (0.037)     (0.030)   (0.040)  
                   
CD test 
statistics  

 -1.54   -0.21   1.16   -1.23   0.17   0.73   -1.09   -0.46   0.63  

TN     1601   1661   1601   1586   1661   1586   1571   1660   1571  
Notes: The cross-sectionally augmented distributed lag (CS-DL) regressions include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages of the regressors. The estimates are 

based on the following specification: 
itt

'
xitiyti

'
i

p
it

'
iiit eycy  

  
xωxδxθ ,

3

0=,
1

0=
=  . See also the notes to Table 14.    

 
 

Table  19: Mean Group Estimates of the Long-Run Effects of the Log of Debt/GDP ratio and Inflation/CPI on the Log of Output Based on 
the Cross-Sectionally Augmented Distributed Lag (CS-DL) Approach, 1965-2010 

   CS-DL (1 lag)   CS-DL (2 lags)   CS-DL (3 lags)  
  (i)  (ii)  (i)  (ii)  (i)  (ii)  

d
�
    -0.068


   -0.075


   -0.057


   -0.066


   -0.048


   -0.051


  

  (0.018)   (0.020)   (0.019)   (0.024)   (0.025)   (0.027)  


�   

 0.095       0.057       0.029      

  (0.075)     (0.102)     (0.128)    

p
�
        -0.008       -0.001       -0.008  

    (0.042)     (0.052)     (0.057)  
             

TN     1618   1641   1603   1626   1588   1611  
Notes: The cross-sectionally augmented distributed lag (CS-DL) regressions include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages of the regressors. The estimates are 

based on the following specification: 
itt

'
xitiyti

'
i

p
it

'
iiit eycy  

  
xωxδxθ ,

3

0=,
1

0=
=  , where in (i) ity  is the log of real GDP,  'ititit d ,=x , itd  is the log of the debt/GDP ratio, and it  is the inflation 

rate and in (ii) ity  is the log of real GDP,  'ititit pd ,=x , itd  is the log of the debt/GDP ratio, and itp  is the log of the CPI. See also the notes to Table 14.    
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Table  20: Estimates of the Average Threshold Effects on Output Growth, 1966-2010 
     30   40   50   60   70   80   90  

(i) Pooled OLS Estimates with  itI , where    log=)( itit dII   


�    -0.008


   -0.009


   -0.009


   -0.009


   -0.009


   -0.009


   -0.011


  

  (0.002)   (0.002)   (0.002)   (0.002)   (0.003)   (0.003)   (0.004)  

ĉ    0.043


   0.042


   0.041


   0.040


   0.039


   0.039


   0.039


  

  (0.002)   (0.001)   (0.001)   (0.001)   (0.001)   (0.001)   (0.001)  
N  40   40   40   40   40   40   40  
NxT   1696   1696   1696   1696   1696   1696   1696  

(ii) Mean Group Estimates with  itI   


�

  
 -0.008


   -0.010


   -0.012


   -0.011


   -0.016


   -0.020


   -0.021


  

  (0.003)   (0.003)   (0.003)   (0.003)   (0.003)   (0.004)   (0.004)  

ĉ    0.045


   0.046


   0.043


   0.041


   0.041


   0.044


   0.048


  

  (0.003)   (0.004)   (0.003)   (0.003)   (0.003)   (0.004)   (0.004)  
N  32   36   31   31   28   19   14  
NxT   1353   1531   1322   1332   1203   810   589  

(iii) CS-DL Mean Group Estimates (3 lags) including )(itI   


�

  
 -0.006   -0.004   -0.008   -0.005   -0.009   -0.001   -0.006  

  (0.009)   (0.005)   (0.009)   (0.006)   (0.006)   (0.009)   (0.007)  

d,
�

  
 -0.071***  

 -0.087


   -0.076


   -0.063


   -0.076


   -0.089


   -0.109


  

  (0.024)   (0.022)   (0.025)   (0.026)   (0.025)   (0.031)   (0.037)  

 ,
�

  

 -0.095*   -0.062  
 -0.090


  

 -0.079  
 -0.161


   -0.138


  

 -0.142  

  (0.050)   (0.045)   (0.052)   (0.049)   (0.053)   (0.061)   (0.110)  
N  32   35   31   31   28   18   14  
NxT   1251   1377   1226   1236   1115   710   547  

Notes: The estimates are based on the following specifications: ,)(=)( ititit eIcyi    ,)(=)( ititiiit eIcyii    ,)(=)( ,

3

0=
,

2

0=
itt

'
xitiyti

'
iit

'
iitiiit eyIcyiii    






xωxδxθ  

where ))(log(=)(  itit dII , ity  is the log of real GDP,  'ititit d ,= x , itd  is the log of the debt GDP ratio, and it  is the inflation rate. The cross-sectionally augmented distributed lag (CS-DL) regression 

(iii) include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages of the regressors. We report heteroscedasticity-robust standard errors for specification (i). See also the notes 
to Table 14.   
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Table  21: Estimates of the Average Threshold Effects on Output Growth Based on the Cross-Sectionally Augmented Distributed Lag (CS-
DL) Approach with Three Lags, 1966-2010 

     30%   40%   50%   60%   70%   80%   90%  

(iv) With )(itI  and  itit dI  0,max)(   


�    0.002   0.001   -0.006   -0.005   -0.018   -0.009   -0.001  

  (0.005)   (0.005)   (0.007)   (0.006)   (0.011)   (0.015)   (0.018)  



�

  

 -0.005   0.018   -0.028  
 -0.116


  

 -0.127  
 -0.192


   -0.140


  

  (0.025)   (0.024)   (0.038)   (0.045)   (0.080)   (0.094)   (0.062)  

d,
�    -0.085


   -0.100


   -0.079


   -0.050


   -0.064


   -0.088


   -0.100


  

  (0.031)   (0.025)   (0.028)   (0.027)   (0.028)   (0.034)   (0.038)  

 ,
�    -0.119


  

 -0.073  
 -0.099


   -0.085


   -0.155


   -0.125


  

 -0.118  

  (0.047)   (0.047)   (0.049)   (0.039)   (0.057)   (0.064)   (0.103)  
N  30   33   31   31   25   18   14  
NxT   1184   1310   1226   1236   999   710   547  

(v) With  itit dI  0,max)(   



�   

 -0.001   -0.001   -0.060  
 -0.113


   -0.158


   -0.171


   -0.159


  

  (0.024)   (0.024)   (0.040)   (0.044)   (0.057)   (0.052)   (0.046)  

d,
�    -0.090


   -0.100


   -0.069


   -0.056


   -0.070


   -0.066


   -0.080


  

  (0.025)   (0.024)   (0.025)   (0.024)   (0.021)   (0.028)   (0.035)  

 ,
�    -0.087


   -0.083


   -0.085


   -0.096


   -0.135


  

 -0.061   -0.031  

  (0.037)   (0.040)   (0.045)   (0.042)   (0.049)   (0.058)   (0.080)  
N  38   36   32   31   28   18   14  
NxT   1487   1414   1263   1236   1115   710   547  

Notes: The estimates are based on the following specifications:      



   ti

'
iit

'
iititiitiiit dIIcyi ,,

2

0=
,0,max)()(= xδxθ   , ,,,

3

0=
, itt

'
xitiy ey   



xω  , 

     



   ti

'
iit

'
iititiiit dIcyii ,,

2

0=
,0,max)(= xδxθ   , ,,,

3

0=
, itt

'
xitiy ey   



xω   where ))(log(=)(  itit dII , ity  is the log of real GDP,  'ititit d ,= x , itd  is the log of the debt 

GDP ratio, and it  is the inflation rate. The cross-sectionally augmented distributed lag (CS-DL) regression (iii) include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages 

of the regressors. See also the notes to Table 14.   
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8  Mathematical Appendix 
We start by briefly summarizing the notations used in the paper, and introduce new notations 
which will prove useful in the proofs provided below. We use baba '=,  to denote the inner 

product (corresponding to the Euclidean norm) of vectors a  and b . 
1

A  ,max
1=1 ij

n

inj
a


 and 

ij
n

jni
a




1=1
maxA  denote the maximum absolute column and row sum norms of nnMA , 

respectively, where nnM  is the space of real-valued nn  matrices.  AAA '=  is the 
spectral norm of A ,  A  is the spectral radius of A ,  ACol  denotes the space spanned by 
the column vectors of A , and A  is the Moore-Penrose pseudoinverse of A . Note that 

  aaaaa '' ==   corresponds to the Euclidean length of vector a . 
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ititit y xz ,= ,   iti

N

i
'
wtwtwt wy zxz  1=

=,= ,  L 1= , L  is the lag operator, 

 
,=,=,=

1,1,

31,2,

2,1,

2,

1,

2,

1,

1




















































































'
pTi

'
Ti

'
iT

'
i

'
pi

'
pi

'
i

'
pi

'
pi

pkpT
ip

'
iT

'
pi

'
pi

kpT
i

iT

pi

pi

pT
i

y

y
y

xxx

xxx
xxx

X

x

x
x

Xy










 

   



















































































'
iT

'
pi

'
pi

kpT
i

'
pTw

'
Tw

'
wT

'
w

'
pw

'
pw

'
w

'
pw

'
pw

pkpT
wp

'
iT

'
pi

'
pi

kpT
w

v

v
v

V

xxx

xxx
xxx

X

z

z
z

Z











2,

1,

1,1,

31,2,

2,1,

2,

1,

1
=,=,=  

 ipwwi XQQ ,= ,  wpww XZQ ,= ,  

  ,= '
wiwi

'
wiwipTqi QQQQIM 

        (8.1) 

 ''
i

p
i

'
ii

'
iip γγγγ  ,...,,= ,  

         .=and,0,1,2,...,=for,,,...,,= 2,

1,

2

1

10

















































iT

pi

pi

i

'
T

'
p

'
p

mpT
p

mppT
p p

















 ε

f

f
f

FFFFF  (8.2) 

Using the above notations, model for the dependent variable can be written as 

,= iiippipipiii εγFαXθXy   

for Ni 1,2,...,= , where ipα  is 1pk  vector containing the first p  coefficients vectors of the 

polynomial  Liα  stacked into one single column vector,  'Tipipii ,1,1, ,...,,=   , and  
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for Ni 1,2,...,=  and Tppt 2,...,1,=  . The model for regressors can be written as 



 

 53

  ,= 0 iii VΓFX   

for Ni 1,2,...,= . 

Define also the following projection matrix 
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8.1  Proofs of Theorems 
Proof of Theorem 3.  
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Consider the asymptotics   
j

pTN ,,  such that 0,ppN   for any constant 1<<0   
and ùTp /3 , <<0 ù . In what follows we establish convergence of the individual terms 
on the right side of (8.4). 

It follows from (8.26) of Lemma 1 and (8.27) of Lemma 2 that  

  .nuniformlyi= 1/2
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
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(8.5), (8.28) of Lemma 2, and (8.30) of Lemma 3 imply 
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Consider now the second term on the right side of (8.4), which involves common factors and 
their loadings. In the previous literature on CCE estimators, Pesaran2006b established the 
asymptotic results for the term involving factors and their loadings in the expression for his 
CCEMG estimator by focusing on the properties of the matrix (using Pesaran2006b's 
notations) Tw

'
i /FMX , see equation (40) in Pesaran2006b, in the full rank case, and by 

exploring the relation (still using Pesaran2006b's notations) 0CFM =wq , see p. 979 of 
Pesaran2006b, in the rank deficient case. But unlike in the set-up of Pesaran2006b, the 
dimension of Tpqi

'
i /FMX  in this paper increases with the sample size, and furthermore 

wpphi γFM  is not necessarily zero since wpp γF  (due to the truncation lag p ) does not 
necessarily belong to the linear space spanned by the column vectors of wiH . We therefore 
focus on the elements of the vector Tippqi

'
i /γFMX  below, which has fixed (finite) dimensions, 

and we also take advantage of the exponential decay of certain coefficients below. Using 
(8.5), boundedness of 1

iΣ  (by Assumption 5), and result (8.29) of Lemma 2 we obtain 
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Vector ipγ  can be written as   ipwpwpip  ηηγγ = , and  

 .= 111
wpipphi

'
iwpphi

'
iipphi

'
i TTT  ηηFMXγFMXγFMX    

Note again that wpp γF  does not necessarily belong to the linear space spanned by the column 
vectors of wiH  due to the truncation lag p . But Assumption 4 constraints the support of i  
to fall strictly within the unit circle, which implies that there exists a positive constant 1<  
such that 1<< i  for all possible realizations of the random variable i . Therefore, under 

Assumptions 3-4, the coefficients in the polynomials    LwL ii
N

iw αα  1=
=  and 

   LwL ii
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, decay 

exponentially to zero15 and we have 

      ,=,, p
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w OpLEpL hfγfγ        (8.7) 

                                                        
15See PesaranChudik2013 for a related discussion. 
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uniformly in t , where   


LwpL iii

N

i

p
w γγ  1=0=

=,  is the truncated polynomial of  Lwγ  

featuring only orders up to pL . Using the properties of orthogonal projectors, we obtain16 

,cHγFγFM wiwppwpphi   (8.8) 

for any   111 pk  vector c . Let c  be defined by    wpt
'

wptt
'
w pLE hchfγ =, . Then it 

follows from (8.7) that the individual elements of 1 pT  vector  cHγF wiwpp   are 

uniformly  p
pO   and using (8.8) we have  

  .= 1/2 p
pwpphi pTO γFM  

Using now Cauchy-Schwarz inequality, we obtain17  
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Noting that pN   0 , and using (8.5) and boundedness of 1
iΣ  (by Assumption 5) we 
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Now consider the term wp
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columns of pF  as  jp ,f , for mpj 1,2,...,= , and individual elements of wpη  and wpγ  as jwp ,  

and jwp , , respectively, for mpj 1,2,...,= . wpp ηF  thus can be written as   jwpjp
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where jp ,  is the j -th element of the vector  ipE γ . Note that 1=lim jNp   if 0=, jp  and 

0=lim jNp   if 0, jp . Expression ywppηF  can now be written as 

  jjwpjp
mp

jywpp  ,,1=
= fηF   and  

                                                        
16We use the following property. Let A  be 21 ss   dimensional matrix, 21 > ss , and let   ''

sA AAAAIM 
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1
=  be the 

corresponding orthogonal projector that projects on orthogonal complement of the space spanned by the column vectors of A . Then for 

any 11 s  dimensional vector x  and any 12 s  dimensional vector c , AcxxM A . 

17 baba , . We set iT Xa 1=  , and pwph γFM=b , where   1/2=  pTOpa , and 

  p
p pTO 1/2= b . 
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Using this result in (8.10) together with (8.5) and the boundedness of 1
iΣ  we obtain 
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Consider now the third term on the right side of (8.4). Let itx~  denote the column  pt   of 

the matrix qi
'
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uniformly in i  and t . It follows that 0
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Using (8.6), (8.12) and (8.15) in (8.4), we obtain  
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and recall that iυ  and ipη  are independently distributed across i . It now follows that when 

iη  is independently distributed from iΓ  and regardless whether the rank condition holds, 
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in which  iVar θΩ = ,  iVar γΩ = , and ihi
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Consistency of the nonparametric estimator can be established in the same way as in 
ChudikPesaran2013a.     

Proof of Theorem 4.  
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where i  is defined below (8.4),   1/2
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We focus on the individual terms on the right side of (8.18) below and assume that 
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for any weights  iw  satisfying granularity conditions (19)-(20). The limit 
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is nonsingular. It therefore follows that  
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Noting that ipγ  can be written as wpipwpip ηηγγ = , and using (8.9), (8.11), (8.19) and 

0pN   we obtain18 
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(8.14) and (8.19) imply  
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Result (8.28) of Lemma 2 and result (8.30) of Lemma 3 establish 
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Using (8.20), (8.21), (8.22), (8.23) and result (8.27) of Lemma 2 in (8.18), we obtain 
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Assumption 5 is sufficient for the bounded second moments of Tihi
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it
�
x  are sufficient for the existence of an upper bound for the second moments of Tihi

'
i /XMX . 

Similar arguments can be used to establish that Tphi
'
i /FMX  has bounded second moments. 

Note also that iv  and ipη  are independently distributed across i ; and, independently 
distributed of hiM , pF  and, assuming that iγ  is independently distributed of iΓ , also iX . It 
therefore follows, using similar arguments as in Lemma 4 of Pesaran2006b, that 
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where  

,= 11  ΨRΨΣP          (8.24) 

in which 

 ,1
lim=,lim=

2

1=1=
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ififiii
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w QΩQΣΩΣRΣΨ  
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



 �
 

 iVar θΩ = ,  iVar γΩ = , ihi
'
ii Tp XMXΣ 1lim=   and FMXQ hi

'
iif Tp 1lim=  . PΣ  can be 

estimated as 

,ˆˆˆ= 112
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where 
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When the rank condition holds, then column vectors of pF  belong to the space spanned by 
the column vectors of wH , and therefore regardless whether iη  is correlated with iΓ  or not, 
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 in the full rank case with PΣ  reduced to 11  ΨRΨ   and 

mkif

0Q = . Consistency of P

�
Σ  can be established using similar arguments as in Pesaran2006b.     

8.2  Lemmas 

Lemma 1  Suppose Assumptions 1- 5 hold and   
j

pTN ,,  such that ùTp /3 , <<0 ù  
Then,  

.nuniformlyi, i
T i

p
ihi

'
i ΣXMX

         (8.26) 
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Proof. Let '
hitξ  denote the individual rows of ihiXM  so that 

.1=
1=

'
hithit

T

pt

ihi
'
i

pTT
pT

T
ξξXMX 


  

Ergodicity in mean of hitξ  has been established in ChudikPesaran2013a, 
(ChudikPesaran2013a, Lemma A3). This completes the proof of (8.26).     

Lemma 2  Suppose Assumptions 1- 5 hold and   
j

pTN ,,  such that ùTp /3 , <<0 ù
Then, 

.nuniformlyi, i
T

N
T

N
kk

p
ihi

'
iiqi

'
i


 0XMXXMX

     (8.27) 

.nuniformlyi,
1

i
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N
T

N
k

p
ihi

'
iiqi
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
 0εMXεMX

     (8.28) 

.nuniformlyi,0
1

i
T

N
T

N
p

phi
'
ipqi

'
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FMXFMX
     (8.29) 

Proof. Results (8.27) and (8.28) can be established in the same way as ChudikPesaran2013a, 
(ChudikPesaran2013a, results A.21 and A.22 of Lemma A6). Consider now (8.29). pF  can be 

written as       pp FFFF ,...,,= 10 , where    'Tpp   fffF ,...,,= 21  for p0,1,2,...,= . Using 
the same arguments as in ChudikPesaran2013a, (ChudikPesaran2013a, results A.23 of 
Lemma A6), it can be shown that  

    ,
mk

p
hi

'
iqi

'
i

T
N

T
N


 0

FMXFMX   

uniformly in i  and  . This is sufficient for (8.29) to hold.     

Lemma 3 Suppose Assumptions 1- 5 hold and   
j

pTN ,,  such that ùTp /3 , <<0 ù . 
Then, 

.nuniformlyi,1
11=

i
TN k

p
ihi

'
i

N

i 
 0εMX        (8.30) 

Proof. Results (8.27) can be established in the same way as ChudikPesaran2013a, 
(ChudikPesaran2013a, results A.26).     

   


